Quantum dots conjugates with unsymmetrical bisacridines enhance cytotoxicity of these antitumor compounds in lung cancer cells and have protecting effects on normal cells - Publication - Bridge of Knowledge

Search

Quantum dots conjugates with unsymmetrical bisacridines enhance cytotoxicity of these antitumor compounds in lung cancer cells and have protecting effects on normal cells

Abstract

Background: In recent years, with the rapid development of nanotechnology and its extensive applications in the medicine, nanocarriers for anticancer drug delivery have gained a great importance. Spherical semiconductor nanocrystals, frequently called quantum dots (QDs) are very attractive nanomaterials for bioimaging applications and they possess properties as potential candidates for drug carrier. Unsymmetrical bisacridines (UAs), synthesized in our laboratory, EP 15461518.1, 2017, are the promising antitumor agents with high cytotoxic activity against many experimental cellular and tumor models (colon, lung, pancreatic, breast, prostate). Here, we investigated whether QDs conjugated with unsymmetrical bisacridines affect cytotoxicity of these compounds in human lung carcinoma cells as well as normal lung fibroblasts. Results: Both compounds exhibited high cytotoxicity against lung cancer H460 cells (IC80: 0.035 µM for C-2028 and 0.273 µM for C-2045), being less active against normal lung fibroblast MRC-5 (IC80: 0.47 µM for C-2028, 0.45 µM for C-2045). C-2028 and C-2045 conjugated with QDred and QDgreen decreased IC80 values of both compounds (QDred: 1.5 and 1.9 fold, QDgreen: 1.2 and 1.3 fold, respectively). Interestingly, UAs conjugated with both red and green QD were much less cytotoxic against normal MRC-5 cells. IC80 value for QDred-C-2028 increased 22 fold, QDred-C-2045 28 fold, QDgreen-C-2028 2.5 fold and QDgreen-C-2045 11 fold. Moreover, QDs alone did not influence cancer and normal cells proliferation. Comparing the obtained values from voltammetric measurements with the maximum amount of UAs compounds immobilized at QD surface one can conclude that the efficiency of the nanoconjugates synthesis was higher for QDred nanocrystals. Conclusions: Our results indicate that conjugation of unsymmetrical bisacridines with QDs improves drugs cytotoxicity in lung cancer cells and protects normal lung fibroblast from drugs action. These effects were more pronounced in the case of QDred, which were more effectively loaded by bisacridines.

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
suplement w czasopiśmie
Published in:
EUROPEAN JOURNAL OF CANCER no. 103, pages e60 - e60,
ISSN: 0959-8049
Title of issue:
European Journal of Cancer. 30th EORTC-NCI-AACR Symposium. Abstract Book strony e60 - e60
Language:
English
Publication year:
2018
Bibliographic description:
Pilch J., Pawłowska M., Bujak P., Nowicka A. M., Augustin E.: Quantum dots conjugates with unsymmetrical bisacridines enhance cytotoxicity of these antitumor compounds in lung cancer cells and have protecting effects on normal cells// European Journal of Cancer. 30th EORTC-NCI-AACR Symposium. Abstract Book/ ed. Alexander M. M. Eggermont Dublin: , 2018, s.e60-e60
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 310 times

Recommended for you

Meta Tags