Quasirelativistic potential energy curves and transition dipole moments of NaRb - Publication - Bridge of Knowledge

Search

Quasirelativistic potential energy curves and transition dipole moments of NaRb

Abstract

We report on extensive calculations of quasi-relativistic potential energy curves and, for the first time, transition dipole moments including spin-orbit and scalar-relativistic effects of the NaRb molecule. The calculated curves of the 0+, 0-, 1, 2 and 3 molecular states correlate for large internuclear separation with the fourteen lowest atomic energies up to the Na(3s ^2S_{1/2}) + Rb(7s ^2S_{1/2}) atomic limit. Several new features of the potential energy curves have been found.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 65 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CHEMICAL PHYSICS no. 500, pages 80 - 87,
ISSN: 0301-0104
Language:
English
Publication year:
2018
Bibliographic description:
Wiatr M., Jasik P., Kilich T., Sienkiewicz J., Stoll H.: Quasirelativistic potential energy curves and transition dipole moments of NaRb// CHEMICAL PHYSICS. -Vol. 500, (2018), s.80-87
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.chemphys.2017.10.005
Bibliography: test
  1. M. Guo, B. Zhu, B. Lu, X. Ye, F. Wang, R. Vexiau, N. Bouloufa-Maafa, G. Quéméner, O. Dulieu, D. Wang, Creation of an ultracold gas of ground-state dipolar 23 Na 87 Rb molecules, Phys. Rev. Lett. 116 (2016) 205303, https://doi. org/10.1103/PhysRevLett.116.205303. open in new tab
  2. B. Zhu, X. Li, X. He, M. Guo, F. Wang, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, D. Wang, Long-range states of the NaRb molecule near the Nað3 2 S 1=2 Þ þ Rbð5 2 P 3=2 Þ asymptote, Phys. Rev. A 93 (2016) 012508, https:// doi.org/10.1103/PhysRevA.93.012508. open in new tab
  3. S.A. Moses, J.P. Covey, M.T. Miecnikowski, D.S. Jin, J. Ye, New frontiers for quantum gases of polar molecules, Nat. Phys. 13 (1) (2017) 13-20, https://doi. org/10.1038/nphys3985. open in new tab
  4. A. Pashov, W. Jastrze ßbski, P. Kortyka, P. Kowalczyk, Experimental long range potential of the B 1 P state in NaRb, J. Chem. Phys. 124 (20) (2006) 204308, https://doi.org/10.1063/1.2198199. open in new tab
  5. M. Tamanis, R. Ferber, A. Zaitsevskii, E.A. Pazyuk, A.V. Stolyarov, H. Chen, J. Qi, H. Wang, W.C. Stwalley, High resolution spectroscopy and channel-coupling treatment of the A 1 R þ À b 3 P complex of NaRb, J. Chem. Phys. 117 (17) (2002) 7980-7988, https://doi.org/10.1063/1.1505442. open in new tab
  6. O. Docenko, M. Tamanis, R. Ferber, E.A. Pazyuk, A. Zaitsevskii, A.V. Stolyarov, A. Pashov, H. Knöckel, E. Tiemann, Deperturbation treatment of the A 1 R þ À b 3 P complex of NaRb and prospects for ultracold molecule formation in X 1 R þ ðv ¼ 0; j ¼ 0Þ, Phys. Rev. A 75 (2007) 042503, https://doi.org/10.1103/ PhysRevA.75.042503. open in new tab
  7. S. Kasahara, T. Ebi, M. Tanimura, H. Ikoma, K. Matsubara, M. Baba, H. Katô, High resolution laser spectroscopy of the X 1 R þ and ð1Þ 3 R þ states of 23 Na 85 Rb molecule, J. Chem. Phys. 105 (4) (1996) 1341-1347, https://doi.org/10.1063/ 1.472000. open in new tab
  8. A. Zaitsevskii, S.O. Adamson, E.A. Pazyuk, A.V. Stolyarov, O. Nikolayeva, O. Docenko, I. Klincare, M. Auzinsh, M. Tamanis, R. Ferber, R. Cimiraglia, Energy and radiative properties of the low-lying NaRb states, Phys. Rev. A 63 (2001) 052504, https://doi.org/10.1103/PhysRevA.63.052504. open in new tab
  9. M. Korek, A. Allouche, M. Kobeissi, A. Chaalan, M. Dagher, K. Fakherddin, M. Aubert-Frécon, Theoretical study of the electronic structure of the LiRb and NaRb molecules, Chem. Phys. 256 (1) (2000) 1-6, https://doi.org/10.1016/ S0301-0104(00)00061-6. open in new tab
  10. R. Dardouri, K. Issa, B. Oujia, F. Xavier Gadéa, Theoretical study of the electronic structure of LiX and NaX (X= Rb, Cs) molecules, Int. J. Quantum Chem. 112 (15) (2012) 2724-2734, https://doi.org/10.1002/qua.23295. open in new tab
  11. M. Chaieb, H. Habli, L. Mejrissi, B. Oujia, F.X. Gadéa, Ab initio spectroscopic study for the NaRb molecule in ground and excited states, Int. J. Quantum Chem. 114 (11) (2014) 731-747, https://doi.org/10.1002/qua.24664. open in new tab
  12. M. Wiatr, P. Jasik, J.E. Sienkiewicz, The adiabatic potentials of low-lying electronic states of the NaRb molecule, Phys. Scr. 90 (5) (2015) 054012, http:// stacks.iop.org/1402-4896/90/i=5/a=05401. open in new tab
  13. S. Rousseau, A. Allouche, M. Aubert-Frécon, Theoretical study of the electronic structure of the KRb molecule, J. Mol. Spectrosc. 203 (2) (2000) 235-243, https://doi.org/10.1006/jmsp.2000.8142, http:// www.sciencedirect.com/science/article/pii/S0022285200981426. open in new tab
  14. M. Korek, G. Younes, A.R. Allouche, Theoretical study of the low-lying electronic states of the molecular ion KRb þ , Int. J. Quantum Chem. 92 (4) (2003) 376-380, https://doi.org/10.1002/qua.10485. open in new tab
  15. M. Korek, Y.A. Moghrabi, A.R. Allouche, Theoretical calculation of the excited states of the KCs molecule including the spin-orbit interaction, J. Chem. Phys. 124 (9) (2006) 094309, https://doi.org/10.1063/1.2173239. open in new tab
  16. M. Korek, S. Bleik, A.R. Allouche, Theoretical calculation of the low laying electronic states of the molecule NaCs with spin-orbit effect, J. Chem. Phys. 126 (12) (2007) 124313, https://doi.org/10.1063/1.2710257. open in new tab
  17. N. Elkork, D. Houalla, M. Korek, Theoretical calculation of the electronic states with spin-orbit effects of the molecule LiCs, Can. J. Phys. 87 (10) (2009) 1079- 1088, https://doi.org/10.1139/P09-070. open in new tab
  18. M. Korek, G. Younes, S. AL-Shawa, Theoretical calculation of the electronic structure of the molecule LiRb including the spin-orbit interaction, J. Mol. Struct. (Thoechem.) 899 (1) (2009) 25-31, https://doi.org/10.1016/j. theochem.2008.12.006, http://www.sciencedirect.com/science/article/pii/ S0166128008007434. open in new tab
  19. A.R. Allouche, M. Aubert-Frécon, Ab initio and long-range investigation of the X ðþ=ÀÞ states of NaK dissociating adiabatically up to Na(3s 2 S 1=2 ) + K(3d 2 D 3=2 ), open in new tab
  20. J. Chem. Phys. 135 (2) (2011) 024309, https://doi.org/10.1063/1.3607964. open in new tab
  21. M. Korek, O. Fawwaz, Theoretical calculation of the electronic states with spin- orbit effects of the molecule NaRb, Int. J. Quantum Chem. 109 (5) (2009) 938- 947, https://doi.org/10.1002/qua.21904. open in new tab
  22. S.J. Park, Y.J. Choi, Y.S. Lee, G.-H. Jeung, Ab initio calculations of the electronic states of KRb, Chem. Phys. 257 (2) (2000) 135-145, https://doi.org/10.1016/ S0301-0104(00)00152-X. open in new tab
  23. S. Rousseau, A. Allouche, M. Aubert-Frécon, Theoretical study of the electronic structure of the KRb molecule, J. Mol. Spectrosc. 203 (2) (2000) 235-243, https://doi.org/10.1006/jmsp.2000.8142, http://www.sciencedirect.com/ science/article/pii/S0022285200981426. open in new tab
  24. Fig. 6. Squares of the transition dipole moments between the ground state and six 1 states. open in new tab
  25. H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, Molpro: a general- purpose quantum chemistry program package, Wiley Interdisciplinary Rev. open in new tab
  26. Comput. Mol. Sci. 2 (2) (2012) 242-253, https://doi.org/10.1002/wcms.82. open in new tab
  27. P. Jasik, J.E. Sienkiewicz, Transition dipole moments of the lithium dimer, At. Data Nucl. Data Tables 99 (2) (2013) 115-155, https://doi.org/10.1016/j. adt.2011.06.003, http://www.sciencedirect.com/science/article/pii/ S0092640X12000733. open in new tab
  28. L. Midowicz, P. Jasik, J.E. Sienkiewicz, Possible schemes of photoassociation processes in the KLi molecule with newly calculated potential energy curves, Cent. Eur. J. Phys. 11 (9) (2013) 1115-1122, https://doi.org/10.2478/s11534- 013-0199-z. open in new tab
  29. P. Łobacz, P. Jasik, J.E. Sienkiewicz, Theoretical study of highly-excited states of KRb molecule, Cent. Eur. J. Phys. 11 (9) (2013) 1107-1114, https://doi.org/ 10.2478/s11534-012-0137-5. open in new tab
  30. P. Jasik, J. Wilczyń ski, J.E. Sienkiewicz, Calculation of adiabatic potentials of Li þ 2 , Eur. Phys. J. Spec. Top. 144 (1) (2007) 85-91, https://doi.org/10.1140/epjst/ e2007-00111-2. open in new tab
  31. P. Jasik, J. Sienkiewicz, Calculation of adiabatic potentials of Li 2 , Chem. Phys. 323 (2) (2006) 563-573, https://doi.org/10.1016/j.chemphys.2005.10.025, http://www.sciencedirect.com/science/article/pii/S0301010405005380. open in new tab
  32. R.J.L. Roy, Level: A computer program for solving the radial Schrödinger equation for bound and quasibound levels, Journal of Quantitative Spectroscopy and Radiative Transfer 186 (2017) 167 -178, satellite Remote Sensing and Spectroscopy: Joint ACE-Odin Meeting, October 2015.https://doi. org/10.1016/j.jqsrt.2016.05.028,http://www.sciencedirect.com/science/ article/pii/S0022407316300978. open in new tab
  33. P. Fuentealba, H. Preuss, H. Stoll, L.V. Szentpály, A proper account of core- polarization with pseudopotentials: single valence-electron alkali compounds, Chem. Phys. Lett. 89 (5) (1982) 418-422, https://doi.org/10.1016/0009-2614 (82)80012-2. open in new tab
  34. B.P. Prascher, D.E. Woon, K.A. Peterson, T.H. Dunning, A.K. Wilson, Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core- valence, and scalar relativistic basis sets for Li, Be, Na, and Mg, Theor. Chem. Acc. 128 (1) (2011) 69-82.https://doi.org/10.1007/s00214-010-0764-0. open in new tab
  35. H. Silberbach, P. Schwerdtfeger, H. Stoll, H. Preuss, Ground and excited states of Rb þ 2 and Cs þ 2 by means of quasi-relativistic pseudo-potentials including core polarisation, J. Phys. B: At. Mol. Phys. 19 (5) (1986) 501,http://stacks.iop.org/ 0022-3700/19/i=5/a=011. open in new tab
  36. L.V. Szentpály, P. Fuentealba, H. Preuss, H. Stoll, Pseudopotential calculations on Rb þ 2 , Cs þ 2 , RbH þ , CsH þ and the mixed alkali dimer ions, Chem. Phys. Lett. 93 (6) (1982) 555 -559,https://doi.org/10.1016/0009-2614(82)83728-7. open in new tab
  37. P. Fuentealba, H. Stoll, L.V. Szentpály, P. Schwerdtfeger, H. Preuss, On the reliability of semi-empirical pseudopotentials: simulation of Hartree-Fock and Dirac-Fock results, J. Phys. B: At. Mol. Phys. 16 (11) (1983) L323, http://stacks. iop.org/0022-3700/16/i=11/a=00. open in new tab
  38. I.S. Lim, P. Schwerdtfeger, B. Metz, H. Stoll, All-electron and relativistic pseudopotential studies for the group 1 element polarizabilities from K to element 119, J. Chem. Phys. 122 (10) (2005) 104103, https://doi.org/10.1063/ 1.1856451. open in new tab
  39. E. Czuchaj, M. Krośnicki, H. Stoll, Quasirelativistic valence ab initio calculation of the potential-energy curves for Cd-rare gas atom pairs, Theoret. Chem. Acc. 105 (3) (2001) 219-226, https://doi.org/10.1007/s002140000206. open in new tab
  40. S. Soorkia, F.L. Quéré, C. Lónard, D. Figgen, Ab initio study of the spinorbit coupling between the A 1 R þ u and b 3 Pu electronic states of Na 2 , Mol. Phys. 105 open in new tab
  41. (9) (2007) 1095-1104, https://doi.org/10.1080/00268970601161574. open in new tab
  42. J.E. Sansonetti, Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Rubidium (Rb I through Rb XXXVII), J. Phys. Chem. Ref. Data 35 (1) (2006) 301-421, https://doi.org/10.1063/1.2035727, 10.1063/1.2035727. open in new tab
  43. J.E. Sansonetti, Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (Rb I through Rb XXXVII), J. Phys. Chem. Ref. Data 35 (1) (2006) 301-421, https://doi.org/10.1063/1.2035727. open in new tab
  44. G. Herzberg, Molecular Spectra and Molecular Structure: Spectra of diatomic molecules, Molecular Spectra and Molecular Structure, R.E. Krieger Publishing Company, 1989.
Verified by:
Gdańsk University of Technology

seen 149 times

Recommended for you

Meta Tags