Rapid Characterization of the Human Breast Milk Lipidome Using a Solid-Phase Microextraction and Liquid Chromatography-Mass Spectrometry-Based Approach. - Publication - Bridge of Knowledge

Search

Rapid Characterization of the Human Breast Milk Lipidome Using a Solid-Phase Microextraction and Liquid Chromatography-Mass Spectrometry-Based Approach.

Abstract

Human breast milk (HBM) is a biofluid consisting of various biomolecules such as proteins, lipids, carbohydrates, minerals and bioactive substances. Due to its unique and complex composition, HBM provides not only nutritional components required for the growth of the infant, but also additional protection against infections. Global insight into the composition of HBM is crucial to understanding the health benefits infants receive from breastfeeding and could be used to improve the composition of milk formula for babies that cannot be breastfed. To improve global profiling of the HBM lipidome, a new analytical approach based on solid-phase microextraction (SPME) and liquid chromatography-mass spectrometry (LC-MS) was developed. The new extraction method allows for the rapid and simple extraction of a broad range of lipids directly from HBM samples. Moreover, the optimized two-step lipid extraction protocol ensures high lipidome coverage without using toxic solvents such as chloroform. The use of liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) and an automated search of a lipid database allows comprehensive identification of the lipids contained in HBM. The demonstrated analytical approach based on SPME sample preparation and LC-Q-TOF-MS is rapid, free of toxic solvents and suited for the qualitative analysis of the HBM lipid composition.

Citations

  • 4 4

    CrossRef

  • 0

    Web of Science

  • 4 3

    Scopus

Cite as

Full text

download paper
downloaded 240 times
Publication version
Accepted or Published Version
License
Copyright (2017 American Chemical Society)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF PROTEOME RESEARCH no. 16, edition 9, pages 3200 - 3208,
ISSN: 1535-3893
Language:
English
Publication year:
2017
Bibliographic description:
Garwolińska D., Hewelt-Belka W., Namieśnik J., Kot-Wasik A.: Rapid Characterization of the Human Breast Milk Lipidome Using a Solid-Phase Microextraction and Liquid Chromatography-Mass Spectrometry-Based Approach.// JOURNAL OF PROTEOME RESEARCH. -Vol. 16, iss. 9 (2017), s.3200-3208
DOI:
Digital Object Identifier (open in new tab) 10.1021/acs.jproteome.7b00195
Bibliography: test
  1. Han, X.; Gross, R. W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res. 2003, 44, 1071− 1079. open in new tab
  2. Hor, T. S.; Cul, J. R.; Cejka, P.; Jurkov, M.; Kellner, V. R.; Dvo, J.; Danu, A.; Ha, S. Analysis of Free Fatty Acids in Beer: Comparison of Solid-Phase Extraction, Solid-Phase Microextraction, and Stir Bar Sorptive Extraction. J. Agric. Food Chem. 2009, 57, 11081−11085.
  3. Orozco-Solano, M.; Ruiz-Jimeńez, J.; Luque de Castro, M. D. open in new tab
  4. Ultrasound-assisted extraction and derivatization of sterols and fatty alcohols from olive leaves and drupes prior to determination by gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 1227−1235. open in new tab
  5. Pusvaskiene, E.; Januskevic, B.; Prichodko, A.; Vickackaite, V. Simultaneous Derivatization and Dispersive Liquid−Liquid Micro- extraction for Fatty Acid GC Determination in Water. Chromatogra- phia 2009, 69, 271−276. open in new tab
  6. Arthur, C. L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 1990, 62, 2145−2148. open in new tab
  7. Pawliszyn, J. Theory of Solid-Phase Microextraction. Handb. Solid Phase Microextraction 2012, 38, 13−59. open in new tab
  8. Vas, G.; Veḱey, K. Solid-phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis. J. Mass Spectrom. 2004, 39, 233−254. open in new tab
  9. Schmidt, K.; Podmore, I. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer. J. Biomarkers 2015, 6, 1−16. open in new tab
  10. Zini, C. A.; Augusto, F.; Christensen, E.; Smith, B. P.; Caramaõ, E. B.; Pawliszyn, J. Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME. Anal. Chem. 2001, 73, 4729− 4735. open in new tab
  11. Wang, Y.; Schneider, B. B.; Covey, T. R.; Pawliszyn, J. High- performance SPME/AP MALDI system for high-throughput sampling and determination of peptides. Anal. Chem. 2005, 77, 8095−8101. open in new tab
  12. Bessonneau, V.; Bojko, B.; Pawliszyn, J. Analysis of human saliva metabolome by direct immersion solid-phase microextraction LC and benchtop orbitrap MS. Bioanalysis 2013, 5, 783−792. open in new tab
  13. Souza Silva, E. A.; Risticevic, S.; Pawliszyn, J. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. TrAC, Trends Anal. Chem. 2013, 43, 24−36. open in new tab
  14. Halleux, V. De; Rigo, J. Variability in human milk composition: benefit of individualized. Am. J. Clin. Nutr. 2013, 98, 529S−535S. open in new tab
  15. Koletzko, B.; Baker, S.; Cleghorn, G.; Neto, U. F.; Gopalan, S.; Hernell, O.; Hock, Q. S.; Jirapinyo, P.; Lonnerdal, B.; Pencharz, P.; Pzyrembel, H.; Ramirez-Mayans, J.; Shamir, R.; Turck, D.; Yamashiro, Y.; Zong-Yi, D. Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated international expert group. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 584−599. open in new tab
  16. Fields, D. A.; Demerath, E. W. Relationship of insulin, glucose, leptin, IL-6 and TNF-a in human breast milk with infant growth and body composition. Pediatr. Obes. 2012, 7, 304−312. open in new tab
  17. Van De Perre, P. Transfer of antibody via mother's milk. Vaccine 2003, 21, 3374−3376. open in new tab
  18. Chiesa, L. M.; Nobile, M.; Biolatti, B.; Pavlovic, R.; Panseri, S.; Cannizzo, F. T.; Arioli, F. Detection of selected corticosteroids and anabolic steroids in calf milk replacers by liquid chromatography- electrospray ionisation -Tandem mass spectrometry. Food Control 2016, 61, 196−203. open in new tab
  19. Cruz-Hernandez, C.; Goeuriot, S.; Giuffrida, F.; Thakkar, S. K.; Destaillats, F. Direct quantification of fatty acids in human milk by gas chromatography. J. Chromatogr. A 2013, 1284, 174−179. open in new tab
  20. Ye, X.; Bishop, A. M.; Needham, L. L.; Calafat, A. M. Automated on-line column-switching HPLC−MS/MS method with peak focusing for measuring parabens, triclosan, and other environmental phenols in human milk. Anal. Chim. Acta 2008, 622, 150−156. open in new tab
  21. Ye, X.; Kuklenyik, Z.; Needham, L. L.; Calafat, A. M. Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2006, 831, 110−115. open in new tab
  22. Kazda, R.; Hajsľova, J.; Poustka, J.; Čajka, T. Determination of polybrominated diphenyl ethers in human milk samples in the Czech Republic: Comparative study of negative chemical ionisation mass spectrometry and time-of-flight high-resolution mass spectrometry. Anal. Chim. Acta 2004, 520, 237−243. open in new tab
  23. Keller, R. P.; Neville, M. C. Determination of total protein in human milk: Comparison of methods. Clin. Chem. 1986, 32, 120−123. open in new tab
  24. Lonnerdal, B.; Woodhouse, L. R.; Glazier, C. Compartmental- ization and quantitation of protein in human milk. J. Nutr. 1987, 117, 1385−1395. open in new tab
  25. Hettinga, K. A.; Reina, F. M.; Boeren, S.; Zhang, L.; Koppelman, G. H.; Postma, D. S.; Vervoort, J. J. M.; Wijga, A. H. Difference in the breast milk proteome between allergic and non-allergic mothers. PLoS One 2015, 10, 1−11. open in new tab
  26. Atkinson, S. A.; Bryan, M. H.; Anderson, G. H. Human milk feeding in premature infants: Protein,fat, and carbohydrate balances in the first two weeks of life. J. Pediatr. 1981, 99, 617−624. open in new tab
  27. Mitoulas, L. R.; Kent, J. C.; Cox, D. B.; Owens, R. a;
  28. Sherriff, J. L.; Hartmann, P. E. Variation in fat, lactose and protein in human milk over 24 h and throughout the first year of lactation. Br. J. Nutr. 2002, 88, 29−37.
  29. Kelishadi, R.; B, H.; Iranpour, R. A study on lipid content and fatty acid of breast milk and its association with mother's diet composition. J. Res. Med. Sci. 2012, 17, 824−827. open in new tab
  30. Gibson, R. A.; Kneebone, G. M. Fatty acid composition of human colostrum and mature breast milk. Am. J. Clin. Nutr. 1981, 34, 252−257. open in new tab
  31. Koletzko, B.; Thiel, I.; Abiodun, P. O. The fatty acid composition of human milk in Europe and Africa. J. Pediatr. 1992, 120, 10−12. open in new tab
  32. Sokol, E.; Ulven, T.; Faergeman, N. J.; Ejsing, C. S. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MS(ALL). Eur. J. Lipid Sci. Technol. 2015, 117, 751−759. open in new tab
  33. Giuffrida, F.; Cruz-Hernandez, C.; Fluck, B.; Tavazzi, I.; Thakkar, S. K.; Destaillats, F.; Braun, M. Quantification of phospholipids classes in human milk. Lipids 2013, 48, 1051−1058. open in new tab
  34. Sala-Vila, A.; Castellote, A. I.; Rodriguez-Palmero, M.; Campoy, C.; Loṕez-Sabater, M. C. Lipid composition in human breast milk from Granada (Spain): Changes during lactation. Nutrition 2005, 21, 467−473. open in new tab
  35. Villasenor, A.; Garcia-Perez, I.; Garcia, A.; Posma, J. M.; Fernandez-Lopez, M.; Nicholas, A. J.; Modi, N.; Holmes, E.; Barbas, C. Breast milk metabolome characterization in a single-phase extraction, multiplatform analytical approach. Anal. Chem. 2014, 86, 8245−8252. open in new tab
  36. Folch, J.; Lees, M.; Sloane Stanley, G. H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497−509. open in new tab
  37. Bligh, E.; Dyer, W. A rapid method of total lipid extraction and purification Can. Can. J. Biochem. Physiol. 1959, 37, 911−917. open in new tab
  38. Chen, S.; Hoene, M.; Li, J.; Li, Y.; Zhao, X.; Haring, H. U.; Schleicher, E. D.; Weigert, C.; Xu, G.; Lehmann, R. Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. J. Chromatogr. A 2013, 1298, 9− 16. open in new tab
  39. Lofgren, L.; Stahlman, M.; Forsberg, G.-B. G.-B.; Saarinen, S.; Nilsson, R.; Hansson, G. I.; Lofgren, L.; Stahlman, M.; Forsberg, G.-B. open in new tab
  40. G.-B.; Saarinen, S.; Nilsson, R.; Hansson, G. I. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J. Lipid Res. 2012, 53, 1690−1700.
  41. Hara, A.; Radin, N. S. Lipid extraction of tissues with a low- toxicity solvent. Anal. Biochem. 1978, 90, 420−426. open in new tab
  42. Barrionuevo, W. R.; Lancas, F. M. Comparison of liquid-liquid extraction (LLE), solid-phase extraction (SPE), and solid-phase microextraction (SPME) for pyrethroid pesticides analysis from enriched river water. Bull. Environ. Contam. Toxicol. 2002, 69, 123− 128. open in new tab
  43. Hewelt-Belka, W.; Nakonieczna, J.; Belka, M.; Bączek, T.; Namiesńik, J.; Kot-Wasik, A. Comprehensive methodology for Staphylococcus aureus lipidomics by liquid chromatography and quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2014, 1362, 62−74. open in new tab
  44. Sartain, M. J.; Dick, D. L.; Rithner, C. D.; Crick, D. C.; Belisle, J. T. Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel "Mtb LipidDB. J. Lipid Res. 2011, 52, 861−872. open in new tab
  45. Liu, W.; Xu, L.; Lamberson, C. R.; Merkens, L. S.; Steiner, R. D.; Elias, E. R.; Haas, D.; Porter, N. a. Assays of plasma dehydrocholesteryl esters and oxysterols from Smith-Lemli-Opitz syndrome patients. J. Lipid Res. 2013, 54, 244−253. open in new tab
  46. Holcǎpek, M.; Jandera, P.; Zderadicǩa, P.; Hruba, L. Characterization of triacylglycerol and diacylglycerol composition of plant oils using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2003, 1010, 195−215.
  47. Hsu, F. F.; Turk, J. Structural determination of sphingomyelin by tandem mass spectrometry with electrospray ionization. J. Am. Soc. Mass Spectrom. 2000, 11, 437−449. open in new tab
  48. Zemski Berry, K. A.; Murphy, R. C. Electrospray ionization tandem mass spectrometry of glycerophosphoethanolamine plasmal- ogen phospholipids. J. Am. Soc. Mass Spectrom. 2004, 15, 1499−1508. open in new tab
  49. Hsu, F. F.; Turk, J. Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: The fragmenta- tion processes. J. Am. Soc. Mass Spectrom. 2003, 14, 352−363. open in new tab
  50. Byrdwell, W. C.; Neff, W. E. Dual parallel electrospray ionization and atmospheric pressure chemical ionization mass spectrometry (MS), MS/MS and MS/MS/MS for the analysis of triacylglycerols and triacylglycerol oxidation products. Rapid Commun. Mass Spectrom. 2002, 16, 300−319. open in new tab
  51. Bitman, J.; Wood, D. L.; Mehta, N. R.; Hamosh P, H. M. Comparison of the cholesteryl ester composition of human milk from preterm and term mothers. J. Pediatr. Gastroenterol. Nutr. 1986, 5, 780−786. open in new tab
Verified by:
Gdańsk University of Technology

seen 176 times

Recommended for you

Meta Tags