S-Shaped Suppression of the Superconducting Transition Temperature in Cu-Intercalated NbSe2 - Publication - Bridge of Knowledge

Search

S-Shaped Suppression of the Superconducting Transition Temperature in Cu-Intercalated NbSe2

Abstract

2H-NbSe2 is the prototype and most frequently studied of the well-known transition metal dichalcogenide (TMDC) superconductors. As 2H-NbSe2 is widely acknowledged as a conventional superconductor, its transition temperature to the superconducting state (Tc) is 7.3 K, a Tc that is substantially higher than those seen for the majority of TMDCs, where Tc values between 2 and 4 K are the norm. Here we report the intercalation of Cu into 2H-NbSe2 to make CuxNbSe2. As is typically found when chemically altering an optimal superconductor, Tc decreases with an increase in x, but the way that Tc is suppressed in this case is unusual: an S-shaped character is observed, with an inflection point near x = 0.03 and, at higher x values, a leveling off of the Tc near 3 K, down to the usual value for a layered TMDC. Electronic characterization reveals corresponding S-like behavior for many of the parameters of the materials that influence Tc. To illustrate its character, the superconducting phase diagram for CuxNbSe2 is contrasted with those of FexNbSe2 and NbSe2−xSx.

Citations

  • 3 5

    CrossRef

  • 0

    Web of Science

  • 3 4

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 175 times
Publication version
Accepted or Published Version
License
Copyright (2017 American Chemical Society)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CHEMISTRY OF MATERIALS no. 29, pages 3704 - 3712,
ISSN: 0897-4756
Language:
English
Publication year:
2017
Bibliographic description:
Luo H., Strychalska-Nowak J., Li J., Tao J., Klimczuk T., Cava R.: S-Shaped Suppression of the Superconducting Transition Temperature in Cu-Intercalated NbSe2// CHEMISTRY OF MATERIALS. -Vol. 29, nr. 8 (2017), s.3704-3712
DOI:
Digital Object Identifier (open in new tab) 10.1021/acs.chemmater.7b00655
Bibliography: test
  1. Withers, R. L.; Bursill, L. A. The structure of the incommensurate superlattices of 2H-TaSe 2 . Philos. Mag. B 1981, 43, 635−672. open in new tab
  2. Arguello, C. J.; Chockalingam, S. P.; Rosenthal, E. P.; Zhao, L.; Gutíerrez, C.; Kang, J. H.; Chung, W. C.; Fernandes, R. M.; Jia, S.; Millis, A. J.; Cava, R. J.; Pasupathy, A. N. Visualizing the charge density wave transition in 2H-NbSe 2 in real space. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 235115. open in new tab
  3. Soumyanarayanan, A.; Yee, M. M.; He, Y.; van Wezel, J.; Rahn, D. J.; Rossnagel, K.; Hudson, E. W.; Norman, M. R.; Hoffman, J. E. Quantum phase transition from triangular to stripe charge order in NbSe 2 . Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 1623−1627. open in new tab
  4. Matthias, B. T.; Geballe, T. H.; Compton, V. B. Super- conductivity. Rev. Mod. Phys. 1963, 35, 1. open in new tab
  5. Revolinsky, E.; Lautenschlager, E. P.; Armitage, C. H. Layer structure superconductor. Solid State Commun. 1963, 1, 59−61. open in new tab
  6. Wilson, J. A.; Di Salvo, F. J.; Mahajan, S. Charge-density waves in metallic, layered, transition-metal dichalcogenides. Phys. Rev. Lett. 1974, 32, 882. open in new tab
  7. Boaknin, E.; Tanatar, M. A.; Paglione, J.; Hawthorn, D.; Ronning, F. R.; Hill, W.; Sutherland, M.; Taillefer, L.; Sonier, J.; Hayden, S. M.; Brill, J. W. Heat conduction in the vortex state of NbSe 2 : evidence for multiband superconductivity. Phys. Rev. Lett. 2003, 90, 117003. open in new tab
  8. Suderow, H.; Tissen, V. G.; Brison, J. P.; Martínez, J. L.; Vieira, S. Pressure induced effects on the fermi surface of superconducting 2H- NbSe 2 . Phys. Rev. Lett. 2005, 95, 117006. open in new tab
  9. Du, C. H.; Lin, W. J.; Su, Y.; Tanner, B. K.; Hatton, P. D.; Casa, D.; Keimer, B.; Hill, J. P.; Oglesby, C. S.; Hohl, H. X-ray scattering studies of 2H-NbSe 2 , a superconductor and charge density wave material, under high external magnetic fields. J. Phys.: Condens. Matter 2000, 12, 5361−5370. open in new tab
  10. Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forro, L.; Shan, L. F. J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe 2 . Nat. Nanotechnol. 2015, 10, 765−770. open in new tab
  11. Meńard, G. C.; Guissart, S.; Brun, C.; Pons, S.; Stolyarov, V. S.; Debontridder, F.; Leclerc, M. V.; Janod, E.; Cario, L.; Roditchev, D.; Simon, P.; Cren, T. Coherent long-range magnetic bound states in a superconductor. Nat. Phys. 2015, 11, 1013−1016.
  12. Kiss, T.; Yokoya, T.; Chainani, A.; Shin, S.; Hanaguri, T.; Nohara, M.; Takagi, H. Hidden Charge-Density-Wave Order in a Low- T c Superconductor 2H-NbSe 2 . https://arxiv.org/vc/cond-mat/ papers/0310/0310326v1.pdf. open in new tab
  13. Johannes, M. D.; Mazin, I. I.; Howells, C. A. Fermi-surface nesting and the origin of the charge-density wave in NbSe 2 . Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 205102. open in new tab
  14. Corcoran, R. C.; Meeson, P. J.; Onuki, Y.; Probst, P. A.; Springford, M.; Takita, K.; Harima, H.; Guo, G. Y.; Gyorffy, B. L. Quantum oscillations in the mixed state of the type II superconductor 2H-NbSe 2 . J. Phys.: Condens. Matter 1994, 6, 4479−4492. open in new tab
  15. Tsuei, C. C.; Kirtley, J. R. d-Wave pairing symmetry in cuprate superconductorsfundamental implications and potential applica- tions. Phys. C 2002, 367, 1−8. open in new tab
  16. Souma, S.; Machida, Y.; Sato, T.; Takahashi, T.; Matsui, H.; Wang, S. C.; Ding, H.; Kaminski, A.; Campuzano, J. C.; Sasaki, S.; Kadowaki, K. The origin of multiple superconducting gaps in MgB 2 . Nature 2003, 423, 65−67. open in new tab
  17. Örd, T.; Kristoffel, N. Modeling MgB 2 two-gap super- conductivity. Phys. C 2002, 370, 17−20.
  18. Kristoffel, N.; Örd, T.; Rago, K. MgB 2 two-gap super- conductivity with intra-and interband couplings. EPL 2003, 61, 109−115. open in new tab
  19. Huang, C. L.; Lin, J.-Y.; Chang, Y. T.; Sun, C. P.; Shen, H. Y.; Chou, C. C.; Berger, H.; Lee, T. K.; Yang, H. D. Experimental evidence for a two-gap structure of superconducting NbSe 2 : A specific- heat study in external magnetic fields. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76, 212504. open in new tab
  20. Boaknin, E.; Tanatar, M. A.; Paglione, J.; Hawthorn, D.; Ronning, F.; Hill, R. W.; Sutherland, M.; Taillefer, L.; Sonier, J.; Hayden, S. M.; Brill, J. W. Heat Conduction in the Vortex State of NbSe 2 : Evidence for Multiband Superconductivity. Phys. Rev. Lett. 2003, 90, 117003. (21) Zehetmayer, M.; Weber, H. W. Experimental evidence for a two-band superconducting state of NbSe 2 single crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 014524. open in new tab
  21. Fletcher, J. D.; Carrington, A.; Diener, P.; Rodiere, P.; Brison, J. P.; Prozorov, R.; Olheiser, T.; Giannetta, R. W. Penetration Depth Study of Superconducting Gap Structure of 2H-NbSe 2 . Phys. Rev. Lett. 2007, 98, 057003. (23) Rodrigo, J. G.; Vieira, S. STM study of multiband super- conductivity in NbSe 2 using a superconducting tip. Phys. C 2004, 404, 306−310. open in new tab
  22. Guillamon, I.; Suderow, H.; Guinea, F.; Vieira, S. Intrinsic atomic-scale modulations of the superconducting gap of 2H-NbSe 2 . Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 77, 134505. (25) Noat, Y.; Cren, T.; Debontridder, F.; Roditchev, D.; Sacks, W.; Toulemonde, P.; San Miguel, A. Signatures of multigap super- conductivity in tunneling spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 014531.
  23. Rahn, D. J.; Hellmann, S.; Kallane, M.; Sohrt, C.; Kim, T. K.; Kipp, L.; Rossnagel, K. Gaps and kinks in the electronic structure of the superconductor 2H-NbSe 2 from angle-resolved photoemission at 1 open in new tab
  24. K. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 224532. (27) Yokoya, T.; Kiss, T.; Chainani, A.; Shin, S.; Nohara, M.; Takagi, H. Fermi Surface Sheet-Dependent Superconductivity in 2H-NbSe 2 . Science 2001, 294, 2518−2520. open in new tab
  25. Tonjes, W. C.; Greanya, V. A.; Liu, R.; Olson, C. G.; Molinie, P. Charge-density-wave mechanism in the 2H-NbSe 2 family: Angle- resolved photoemission studies. Phys. Rev. B: Condens. Matter Mater. Phys. 2001, 63, 235101. open in new tab
  26. Xi, X. X.; Wang, Z. F.; Zhao, W. W.; Park, J. H.; Law, K. T.; Berger, H.; Forro, L. J.; Shan, J.; Mak, K. F. Ising pairing in superconducting NbSe 2 atomic layers. Nat. Phys. 2016, 12, 139−144. open in new tab
  27. Koh, Y. Y.; Kim, Y. K.; Jung, W. S.; Han, G. R.; Park, S. R.; Leem, C. S.; Kim, C.; Song, D. J.; Kyung, W. S.; Choi, H. Y.; Yang, L. X.; He, C.; Chen, F.; Feng, D. L.; Kim, C. Photoemission studies of Cu intercalated NbSe 2 . J. Phys. Chem. Solids 2011, 72, 565−567. open in new tab
  28. Rodríguez-Carvajal, J. Recent developments of the program FULLPROF. Commission on Powder Diffraction 2001, 26, 12−19. open in new tab
  29. Voorhoeve, J. M.; van den Berg, N.; Robbins, M. Intercalation of the Niobium-Diselenide Layer Structure by First-Row Transition Metals. J. Solid State Chem. 1970, 1, 134−137. open in new tab
  30. McMillan, W. L. Transition temperature of strong-coupled superconductors. Phys. Rev. 1968, 167, 331. open in new tab
  31. Wilson, J. A.; Barker, A. S.; Di Salvo, F. J.; Ditzenberger, J. A. open in new tab
  32. Ditzenberger, Infrared properties of the semimetal TiSe 2 . Phys. Rev. B: Condens. Matter Mater. Phys. 1978, 18, 2866−2875.
  33. Kohn, W. Excitonic Phases. Phys. Rev. Lett. 1967, 19, 439−442. open in new tab
  34. Werthamer, N. R.; Helfand, E.; Hohenberg, P. C. Temperature and Purity Dependence of the Superconducting Critical Field, H c2 . III. Electron Spin and Spin-Orbit Effects. Phys. Rev. 1966, 147, 295. open in new tab
  35. Kresin, V. Z.; Wolf, S. A. Fundamentals of superconductivity; open in new tab
  36. Luo, H. X.; Xie, W. W.; Tao, J.; Pletikosic, I.; Valla, T. G.; Sahasrabudhe, S.; Osterhoudt, G.; Sutton, E.; Burch, K. S.; Seibel, E. M.; Krizan, J. W.; Zhu, Y. M.; Cava, R. J. Differences in chemical doping matter -Superconductivity in Ti 1-x Ta x Se 2 but not in Ti 1-x Nb x Se 2 . Chem. Mater. 2016, 28, 1927−1935. open in new tab
  37. Winiarski, M. J.; Wiendlocha, B.; Gołąb, S.; Kushwaha, S. K.; Wisńiewski, P.; Kaczorowski, D.; Thompson, J. D.; Cava, R. J.; Klimczuk, T. Superconductivity in CaBi 2 . Phys. Chem. Chem. Phys. 2016, 18, 21737−21745. open in new tab
  38. Yadav, C. S.; Paulose, P. L. Upper critical field, lower critical field and critical current density of FeTe 0.60 Se 0.40 single crystal. New J. Phys. 2009, 11, 103046. open in new tab
  39. Kiss, T.; Yokoya, T.; Chainani, A.; Shin, S.; Hanaguri, T.; Nohara, M.; Takagi, H. Charge-order-maximized momentum depend- ent superconductivity. Nat. Phys. 2007, 3, 720−725. open in new tab
  40. Naik, I.; Rastogi, A. K. Charge density wave and super- conductivity in 2H-and 4H-NbSe 2 : A revisit. Pramana 2011, 76, 957− 963. open in new tab
  41. Ugeda, M. M.; Bradley, A. J.; Zhang, Y.; Onishi, S.; Chen, Y.; Ruan, W.; Ojeda-Aristizabal, C.; Ryu, H.; Edmonds, M. T.; Tsai, H. Z.; Riss, A.; Mo, S. K.; Lee, D. H.; Zettl, A.; Hussain, Z.; Shen, Z. X.; Crommie, M. F. Characterization of collective ground states in single- layer NbSe 2 . Nat. Phys. 2016, 12, 92−97. open in new tab
  42. Hauser, J. J.; Robbins, M.; DiSalvo, F. J. Effect of 3d Impurities on the Superconducting Transition Temperature of the Layered Compound NbSe 2 . Phys. Rev. B 1973, 8, 1038−1042. open in new tab
  43. Fisher, W. G.; Sienko, M. J. Stoichiometry, structure, and physical properties of niobium disulfide. Inorg. Chem. 1980, 19, 39−43. open in new tab
Verified by:
Gdańsk University of Technology

seen 89 times

Recommended for you

Meta Tags