Signal filtering method of the fast-varying diesel exhaust gas temperature - Publication - Bridge of Knowledge

Search

Signal filtering method of the fast-varying diesel exhaust gas temperature

Abstract

The paper presents the problem of the impact of external distortions originating on laboratory test stands on the results of measurements of fast-varying diesel exhaust gas temperature. It has been stressed how significant the aspect of the test stand adaptation is during an experiment to ensure the smallest possible impact. This paper, however, focuses on the methods of mathematical processing of a signal recorded during experimental research of a real object. The most significant parameter requiring filtering is the fast-varying exhaust gas temperature in the engine exhaust channel. Methods of mathematical processing adequate to this type of distorted signal have been presented, particularly those that can be used in the Matlab environment and consisting in averaging of the obtained curves of temperature changes. The results of the application of these methods have also been presented on actual curves recorded during laboratory tests and their evaluation has been made.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 57 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
Combustion Engines pages 48 - 52,
ISSN: 2300-9896
Language:
English
Publication year:
2018
Bibliographic description:
Puzdrowska P.: Signal filtering method of the fast-varying diesel exhaust gas temperature// Combustion Engines. -., iss. 175(4) (2018), s.48-52
DOI:
Digital Object Identifier (open in new tab) 10.19206/ce-2018-407
Bibliography: test
  1. BROWN, C., KEE, R.J., IRWIN, G.W. et al. Identification applied to dual sensor transient temperature measurement. UKACC Int Control Conference. Manchester 2008.
  2. GANDER, W., HREBICEK, J., Solving problems in scien- tific computing using Maple and Matlab. Springer. Berlin 2004. open in new tab
  3. GORRY, P.A. General least -squares smoothing and differ- entiation by the convolution (Savitzky-Golay) method. Ana- lytical Chemistry. 1990, 62(6), 570-573. open in new tab
  4. JAREMKIEWICZ, M. Odwrotne zagadnienia wymiany ciepła, występujące w pomiarach nieustalonej temperatury płynów. Rozprawa doktorska. Wydawnictwo Politechniki Krakowskiej, Kraków 2011.
  5. JAREMKIEWICZ, M., TALER, J., Inverse determination of transient fluid temperature in pipelines. Journal of Power Technologies. 2016, 96(6), 385-389. open in new tab
  6. KORCZEWSKI, Z. Exhaust gas temperature measurements in diagnostics of turbocharged marine internal combustion engines. Part I. Standard Measurements. Polish Maritime Research.2015, 22/1(85), 47-54. open in new tab
  7. KORCZEWSKI, Z. Exhaust gas temperature measurements in diagnostics of turbocharged marine internal combustion engines. Part II. Dynamic Measurements. Polish Maritime Research. 23/1(89), 68-76. open in new tab
  8. KORCZEWSKI, Z., Diagnostyka eksploatacyjna okręto- wych silników spalinowych -tłokowych i turbinowych. Wybrane zagadnienia. Wydawnictwo Politechniki Gdańskiej. Gdańsk 2017.
  9. KORCZEWSKI, Z. The method of energy-efficiency inves- tigations of the newly produced marine fuels through the application of a diesel engine. Materiały Konferencji MAPE, Explo-Ship 2018. Zawiercie. open in new tab
  10. KORCZEWSKI, Z., PUZDROWSKA, P. Analytical method of determining dynamic properties of thermocouples used in measurements of quick -changing temperatures of exhaust gases in marine diesel engines. Combustion Engines. 2015, 162(3), 300-306. open in new tab
  11. KORCZEWSKI, Z., ZACHAREWICZ, M. Alternative diagnostic method applied on marine diesel engines having limited monitoring susceptibility. Transactions of the Insti- tute of Measurement and Control. 2012, 34(8), 937-946. open in new tab
  12. KORCZEWSKI, Z., ZACHAREWICZ, M. Diagnostyka symulacyjna układu turbodoładowania okrętowego tłoko- wego silnika spalinowego. Zeszyty naukowe Akademii Marynarki Wojennej. 2007, 2(169).
  13. LUO, J., YING, K., BAI, J. Savitzky-Golay smoothing and differention filter for even number data. Signal Processing. 2005, 85(7), 1429-1434. open in new tab
  14. MARSZAŁKOWSKI, K., PUZDROWSKA, P. A laboratory stand for the analysis of dynamic properties of thermocou- ples. Journal of Polish CIMEEAC. 2015, 10(1), 111-120. open in new tab
  15. OLCZYK, A. Koncepcja pomiaru szybkozmiennej tempera- tury gazu z uwzględnieniem dynamicznej składowej tempe- ratury. Pomiary Automatyka Kontrola. 2007, 53 Bis/9, 576- 579.
  16. PRATAP, R. Matlab dla naukowców i inżynierów. Państ- wowe Wydawnictwo Naukowe. Warszawa 2015.
  17. PUZDROWSKA, P. Determining the time constant using two methods and defining the thermocouple response to sine excitation of gas temperature. Journal of Polish CIMEEAC. 2016, 11(1), 157-167.
  18. SAVITZKY, A., GOLAY, M. J. E. Smoothing and differen- tiation of data by simplified least squares procedures. Analy- tical Chemistry. Illinois 1964. open in new tab
  19. ZACHAREWICZ, M. Metoda diagnozowania przestrzeni roboczych silnika okrętowego na podstawie parametrów procesów gazodynamicznych w kanale zasilającym turbo- sprężarkę. Rozprawa doktorska. AMW, Gdynia 2009.
Verified by:
Gdańsk University of Technology

seen 121 times

Recommended for you

Meta Tags