Simple Computational Methods in Predicting Limit Load of High-Strength Cold-Formed Sections due to Local Buckling: A Case Study
Abstract
Cold-formed thin-walled sections are prone to local buckling caused by residual stresses, geometrical imperfections and inconsistency of material properties. We present a real case of buckling failure and conduct a numerical and experimental study aimed to identify methods capable of predicting such failures. It is important because designers of structures are getting more FEA-oriented and tend to avoid lengthy procedures of cold-formed structures design. Currently adopted methods are complicated and require patience and caution from a designer which is reasonable in case of the most important structural members but not necessarily so in ordinary design. Since it is important, we offer an insight into several FEA and manual methods which were sufficient to predict the failure while remaining fairly simple. Using a non-uniform partial safety factor was still necessary. We hope that this paper will be of interest for people performing a lot of routine analyses and worrying about reliability of their computations.
Citations
-
1
CrossRef
-
0
Web of Science
-
1
Scopus
Authors (4)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Polish Maritime Research
no. 25,
edition 4,
pages 73 - 82,
ISSN: 1233-2585 - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Bielski P. M., Samson L., Wysocki O., Czyżewicz J.: Simple Computational Methods in Predicting Limit Load of High-Strength Cold-Formed Sections due to Local Buckling: A Case Study// Polish Maritime Research. -Vol. 25, iss. 4 (2018), s.73-82
- DOI:
- Digital Object Identifier (open in new tab) 10.2478/pomr-2018-0134
- Verified by:
- Gdańsk University of Technology
seen 228 times