Simple gait parameterization and 3D animation for anonymous visual monitoring based on augmented reality - Publication - Bridge of Knowledge

Search

Simple gait parameterization and 3D animation for anonymous visual monitoring based on augmented reality

Abstract

The article presents a method for video anonymization and replacing real human silhouettes with virtual 3D figures rendered on a screen. Video stream is processed to detect and to track objects, whereas anonymization stage employs animating avatars accordingly to behavior of detected persons. Location, movement speed, direction, and person height are taken into account during animation and rendering phases. This approach requires a calibrated camera, and utilizes results of visual object tracking. A procedure for transforming objects visual features and bounding boxes into gait parameters for animated figures is presented. Conclusions and future work perspectives are provided.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cite as

Full text

download paper
downloaded 91 times
Publication version
Accepted or Published Version
License
Copyright (Springer Science+Business Media New York 2015)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MULTIMEDIA TOOLS AND APPLICATIONS no. 75, edition 17, pages 1 - 21,
ISSN: 1380-7501
Publication year:
2016
Bibliographic description:
Szczuko P.: Simple gait parameterization and 3D animation for anonymous visual monitoring based on augmented reality// MULTIMEDIA TOOLS AND APPLICATIONS. -Vol. 75, iss. 17 (2016), s.1-21
DOI:
Digital Object Identifier (open in new tab) 10.1007/s11042-015-2874-0
Bibliography: test
  1. Anders MJ., Blender 2.49 Scripting, Packt Publishing, 2010.
  2. Atrey PK., El Saddik A., Kankanhalli MS., Effective multimedia surveillance using a human-centric approach. Multimedia Tools and Applications, Vol. 51, Issue 2, pp 697- 721, Springer, 2011. open in new tab
  3. Ballan L., Bertini M., Del Bimbo A., Seidenari L., Serra G., Event detection and recognition for semantic annotation of video. Multimedia Tools and Applications, Vol. 51, Issue 1, pp 279-302, Springer, 2011. open in new tab
  4. Benmokhtar R., Robust human action recognition scheme based on high-level feature fusion, Multimedia Tools Applications, Vol. 69, Issue 2, 253-275, Springer, 2014. open in new tab
  5. Bratt B., Rotoscoping. Focal Press, 2012. open in new tab
  6. Biovision Hierarchy, http://en.wikipedia.org/wiki/Biovision_Hierarchy open in new tab
  7. Cederberg JN., Projective Geometry. A Course in Modern Geometries, Undergraduate Texts in Mathematics, 213-313, Springer, 2001. open in new tab
  8. Cichowski, J.; Czyzewski, A. Reversible video stream anonymization for video surveillance systems based on pixels relocation and watermarking. Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference. 1971-1977, 2011. open in new tab
  9. Czyżewski A., Szwoch G., Dalka P., Szczuko P., Ciarkowski A., Ellwart D., Merta T., Łopatka K., Kulasek Ł., Wolski J., Multi-stage video analysis framework. (Ed. Weiyao Lin) Video Surveillance, Chapter 9, 145-171, Intech, 2011. open in new tab
  10. Dalka P., Detection and Segmentation of Moving Vehicles and Trains Using Gaussian Mixtures, Shadow Detection and Morphological Processing. Machine Graphics and Vision, Vol. 15, No. 3/4, 339 -348, 2006.
  11. Dalka P., Szwoch G., Szczuko P., Czyżewski A., Video Content Analysis in the Urban Area Telemonitoring System. G.A. Tsihrintzis et al. (Eds.): Multimedia Services in Inteligent Environments, 241-261, Springer-Verlag Berlin Heidelberg, 2010. open in new tab
  12. Deutscher, J., Blake, A., Reid, I.D.: Articulated body motion capture by annealed particle filtering. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 126-133, 2000. open in new tab
  13. Gao T., Li G., Lian S., Zhang J., Tracking video objects with feature points based particle filtering. Multimedia Tools and Applications, Volume 58, Issue 1, pp 1-21, Springer, 2012. open in new tab
  14. Ghazal M., Vázquez C., Amer A., Real-time vandalism detection by monitoring object activities. Multimedia Tools and Applications, Vol. 58, Issue 3, pp 585-611, Springer, 2012. open in new tab
  15. Goffredo M., Bouchrika I., Carter JN., Nixon MS., Performance analysis for automated gait extraction and recognition in multi-camera surveillance. Multimedia Tools and Applications, Vol. 50, Issue 1, pp 75-94, Springer, 2010. open in new tab
  16. Guo C., Liu D., Guo Y., Sun Y., An adaptive graph cut algorithm for video moving objects detection. Multimedia Tools and Applications, Volume 72, Issue 3, pp 2633- 2652, Springer, 2014. open in new tab
  17. Höferlin B., Höferlin M., Weiskopf D., Heidemann G., Information-based adaptive fast- forward for visual surveillance. Multimedia Tools and Applications, Vol. 55, Issue 1, pp 127-150, Springer, 2011. open in new tab
  18. Hu W, Tan T, Wang L, Maybank S (2004) A survey on visual surveillance of object motion and behaviors. IEEE Trans Syst Man Cybern 34:334-352 open in new tab
  19. ITU-T recommendation P.800: Methods for subjective determination of transmission quality (http://www.itu.int/rec/T-REC-P.800-199608-I/en), 1996.
  20. Kakadiaris, I., Metaxas, D.: Model-based estimation of 3D human motion. IEEE Tran. Pattern Analysis and Machine Intelligence, Vol. 22, No. 12, 1453-1459, 2000. open in new tab
  21. Kehl, R., Van Gool, L.: Markerless tracking of complex human motions from multiple views. Computer Vision and Image Understanding Vol. 104, No. 2-3, 190-209, 2006. open in new tab
  22. Kotus J., Dalka P., Szczodrak M., Szwoch G., Szczuko P., Czyżewski A., Multimodal Surveillance Based Personal Protection System. Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 100-105, Poznan, 2013. open in new tab
  23. Kotus J., Łopatka K., Czyżewski A., Detection and localization of selected acoustic events in acoustic field for smart surveillance applications. Multimedia Tools and Applications, Vol. 68, Issue 1, 5-21, Springer, 2014. open in new tab
  24. Kriechbaum A., Mörzinger R., Thallinger G., A framework for unsupervised mesh based segmentation of moving objects. Multimedia Tools and Applications, Vol. 50, 7- 28, Springer, 2010. open in new tab
  25. Krolewski J., Gawrysiak P., The Mobile Personal Augmented Reality Navigation System. Man-Machine Interactions Vol. 2, Springer, 2011. open in new tab
  26. Lalos C., Voulodimos A., Doulamis A., Varvarigou T, Efficient tracking using a robust motion estimation technique, Multimedia Tools Applications, Vol. 69, Issue 2, 277- 292, Springer, 2014. open in new tab
  27. Laveau S., Faugeras O., Oriented projective geometry for computer vision. Computer Vision ECCV, Lecture Notes in Computer Science Vol. 1064, 147-156, Springer 1996. open in new tab
  28. Lavee G., Khan L., Thuraisingham B., A framework for a video analysis tool for suspicious event detection. Multimedia Tools and Applications, Vol. 35, Issue 1, pp 109-123, Springer, 2007. open in new tab
  29. Moeslund T.B., Hilton A, Kruger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104:90-126 open in new tab
  30. Moshkovitz M., The Virtual Studio: Technology and Techniques. Focal Press, 2000.
  31. Mullen T., Mastering Blender, Sybex, 2012. open in new tab
  32. Novaes RD., Dourado VZ. Usual gait speed assessment in middle-aged and elderly Brazilian subjects. Brazilian Journal of Physical Therapy, Vol.15, n.2, p.117-122, 2011. doi: http://dx.doi.org/10.1590/S1413-35552011000200006 open in new tab
  33. Ntalianis K-S, Doulamis A-D, Tsapatsoulis N, Doulamis N, Human action annotation, modeling and analysis based on implicit user interaction. Multimedia Tools Applications, Vol. 50, 199-225, Springer, 2010. open in new tab
  34. PETS 2006 Bemchmark Data, IEEE Conference on Computer Vision and Pattern Recognition 2006, www.cvg.rdg.ac.uk/PETS2006/data.html, 2006. open in new tab
  35. Roth R., Koller-Meier E., Van Gool L., Multi-object tracking evaluated on sparse events. Multimedia Tools and Applications, Vol. 50, 29-47, Springer, 2010. open in new tab
  36. Rumiński D., Walczak K., Creation of Interactive AR Content on Mobile Devices. Business Information Systems Workshops, Springer, 2013. open in new tab
  37. Samangooei S., Nixon MS., Performing content-based retrieval of humans using gait biometrics. Multimedia Tools and Applications, Volume 49, Issue 1, pp 195-212, Springer, 2010. open in new tab
  38. Schreer O., Kauff P., Sikora T. (Eds), 3D Videocommunication: Algorithms, concepts and real-time systems in human centred communication. Wiley, 2005. open in new tab
  39. Simon C., Meessen J., De Vleeschouwer Ch., Visual event recognition using decision trees. Multimedia Tools and Applications, Vol. 50, Issue 1, pp 95-121, Springer, 2010. open in new tab
  40. Szwoch G., Dalka P., Czyżewski A., Spatial Calibration of a Dual PTZ-Fixed Camera System for Tracking Moving Objects in Video. Journal of Imaging Science and Technology (JIST), Vol. 57, No. 2, 1-10, 2013. open in new tab
  41. Szczuko P., Hierarchical Estimation of Human Upper Body Based on 2D Observation Utilizing Evolutionary Programming and "Genetic Memory". Multimedia Communications, Services and Security, Communications in Computer and Information Science, Vol. 149, 82-90, Springer, 2011. open in new tab
  42. Szczuko P., Genetic programming extension to APF-based monocular human body pose estimation. Multimedia Tools and Applications, Vol. 68, 177-192, Springer, 2014. open in new tab
  43. Szwoch G., Dalka P., Ciarkowski A., Szczuko P., Czyzewski A., Visual Object Tracking System Employing Fixed and PTZ Cameras. Journal of Intelligent Decision Technologies, Vol. 5, No. 2, 177 -188, 2011. http://iospress.metapress.com/content/ m5060n24tk125406/?p=2aa903da834b4371955e56c56b058b6b&pi=5 open in new tab
  44. Szwoch G., Dalka P., Layered background modeling for automatic detection of unattended objects in camera images. WIAMIS 2011: 12th International Workshop on Image Analysis for Multimedia Interactive Services, Preprint No. 50, Delft 2011. open in new tab
  45. Tavli B., Bicakci K., Zilan R., Barcelo-Ordinas JM., A survey of visual sensor network platforms. Multimedia Tools and Applications, Vol. 60, Issue 3, pp 689-726, Springer, 2012. open in new tab
  46. Tsai RY, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation, Vol. 3 No. 4, 323-344, 1987. open in new tab
  47. University of Maryland, Guide to Authoring Media Ground Truth with ViPER-GT, http://viper-toolkit.sourceforge.net/docs/gt/ open in new tab
  48. Uustal H., Baerga E., Gait Analysis. In: (Ed: Sara Cuccurullo) Physical Medicine and Rehabilitation Board Review. Demos Medical Publishing, New York, 2004. http://www.ncbi.nlm.nih.gov/books/NBK27235/ open in new tab
  49. Wikitude, augmented reality platform, http://www.wikitude.com/
Verified by:
Gdańsk University of Technology

seen 112 times

Recommended for you

Meta Tags