Solvent-Free Synthesis of Phosphonic Graphene Derivative and Its Application in Mercury Ions Adsorption - Publication - Bridge of Knowledge

Search

Solvent-Free Synthesis of Phosphonic Graphene Derivative and Its Application in Mercury Ions Adsorption

Abstract

Functionalized graphene was efficiently prepared through ball-milling of graphite in the presence of dry ice. In this way, oxygen functional groups were introduced into material. The material was further chemically functionalized to produce graphene derivative with phosphonic groups. The obtained materials were characterized by spectroscopic and microscopic methods, along with thermogravimetric analysis. The newly developed material was used as an efficient mercury adsorbent, showing high adsorption efficiency. The adsorption isotherms were fitted using Freundlich and Langmuir models. The adsorption kinetics were fitted with pseudo-first order and pseudo-second order models. Adsorption selectivity was determined in the presence of cadmium ions and nickel ions. The presence of mentioned bivalent ions in the solution did not affect mercury adsorption efficiency.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 22 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Nanomaterials no. 9, pages 1 - 15,
ISSN: 2079-4991
Language:
English
Publication year:
2019
Bibliographic description:
Olszewski R. S., Nadolska M., Łapiński M. S., Prześniak-Welenc M., Cieślik B., Żelechowska K.: Solvent-Free Synthesis of Phosphonic Graphene Derivative and Its Application in Mercury Ions Adsorption// Nanomaterials. -Vol. 9, iss. 4 (2019), s.1-15
DOI:
Digital Object Identifier (open in new tab) 10.3390/nano9040485
Bibliography: test
  1. Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530-1534. [CrossRef] open in new tab
  2. Neto, A.C.; Guinea, F.; Peres, N.M.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109-162. [CrossRef] open in new tab
  3. Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127-2150. [CrossRef] open in new tab
  4. Novoselov, K.S.; Fal, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200. [CrossRef] [PubMed] open in new tab
  5. Iwan, A.; Malinowski, M.; Pasciak, G. Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates. Renew. Sustain. Energy Rev. 2015, 49, 954-967. [CrossRef] open in new tab
  6. Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323-327. [CrossRef] [PubMed] open in new tab
  7. Han, T.H.; Kim, H.; Kwon, S.J.; Lee, T.W. Graphene-based flexible electronic devices. Mater. Sci. Eng. R. Rep. 2017, 118, 1-43. [CrossRef] open in new tab
  8. Justino, C.I.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A. Graphene based sensors and biosensors. TrAC 2017, 91, 53-66. [CrossRef] open in new tab
  9. Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A.C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611-622. [CrossRef] open in new tab
  10. Mohan, V.B.; Lau, K.T.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B Eng. 2018, 142, 200-220. [CrossRef] open in new tab
  11. Georgakilas, V.; Otyepka, M.; Bourlinos, A.B.; Chandra, V.; Kim, N.; Kemp, K.C.; Hobza, P.; Zboril, R.; Kim, K.S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156-6214. [CrossRef] [PubMed] open in new tab
  12. Kuila, T.; Bose, S.; Mishra, A.K.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061-1105. [CrossRef] open in new tab
  13. Nanomaterials 2019, 9, 485 open in new tab
  14. Boissezon, R.; Muller, J.; Beaugeard, V.; Monge, S.; Robin, J.J. Organophosphonates as anchoring agents onto metal oxide-based materials: Synthesis and applications. RSC Adv. 2014, 4, 35690-35707. [CrossRef] open in new tab
  15. Zhao, R.; Rupper, P.; Gaan, S. Recent development in phosphonic acid-based organic coatings on aluminum. Coatings 2017, 7, 133. [CrossRef] open in new tab
  16. Vahabi, H.; Longuet, C.; Ferry, L.; David, G.; Robin, J.J.; Lopez-Cuesta, J.M. Effect of aminobisphosphonated copolymer on the thermal stability and flammability of poly (methyl methacrylate). Polym. Int. 2012, 61, 129-134. [CrossRef] open in new tab
  17. Opwis, K.; Wego, A.; Bahners, T.; Schollmeyer, E. Permanent flame retardant finishing of textile materials by a photochemical immobilization of vinyl phosphonic acid. Polym. Degrad. Stab. 2011, 96, 393-395. [CrossRef] open in new tab
  18. Choong, C.; Griffiths, J.P.; Moloney, M.G.; Triffitt, J.; Swallow, D. Direct introduction of phosphonate by the surface modification of polymers enhances biocompatibility. React. Funct. Polym. 2009, 69, 77-85. [CrossRef] open in new tab
  19. Liu, M.; Chen, S.; Zhao, X.; Ye, Y.; Li, J.; Zhu, Q.; Zhao, B.; Zhao, W.; Huang, X.; Shen, J. Biocompatible phosphonic acid-functionalized silica nanoparticles for sensitive detection of hypoxanthine in real samples. Talanta 2013, 117, 536-542. [CrossRef] open in new tab
  20. Schull, T.L.; Knight, D.A. Organometallic phosphonic acids: Synthesis and coordination chemistry. Coord. Chem. Rev. 2005, 249, 1269-1282. [CrossRef] open in new tab
  21. Di Credico, B.; Redaelli, M.; Bellardita, M.; Calamante, M.; Cepek, C.; Cobani, E.; D'Arienzo, M.; Evangelisti, C.; Marelli, M.; Moret, M. Step-by-step growth of HKUST-1 on functionalized TiO 2 surface: An efficient material for CO 2 capture and solar photoreduction. Catalysts 2018, 8, 353. [CrossRef] open in new tab
  22. Żelechowska, K.; Prześniak-Welenc, M.; Łapiński, M.; Kondratowicz, I.; Miruszewski, T. Fully scalable one-pot method for the production of phosphonic graphene derivatives. Beilstein J. Nanotechnol. 2017, 8, 1094-1103. [CrossRef] open in new tab
  23. Some, S.; Shackery, I.; Kim, S.J.; Jun, S.C. Phosphorus-doped graphene oxide layer as a highly efficient flame retardant. Chem. Eur. J. 2015, 21, 15480-15485. [CrossRef] [PubMed] open in new tab
  24. Kim, M.J.; Jeon, I.Y.; Seo, J.M.; Dai, L.; Baek, J.B. Graphene phosphonic acid as an efficient flame retardant. ACS Nano 2014, 8, 2820-2825. [CrossRef] open in new tab
  25. Zakeri, M.; Abouzari-lotf, E.; Miyake, M.; Mehdipour-Ataei, S.; Shameli, K. Phosphoric acid functionalized graphene oxide: A highly dispersible carbon-based nanocatalyst for the green synthesis of bio-active pyrazoles. Arab. J. Chem. 2019, 12, 188-197. [CrossRef] open in new tab
  26. He, L.; Zhao, Y.; Xing, L.; Liu, P.; Wang, Z.; Zhang, Y.; Liu, X. Preparation of phosphonic acid functionalized graphene oxide-modified aluminum powder with enhanced anticorrosive properties. Appl. Surf. Sci. 2017, 411, 235-239. [CrossRef] open in new tab
  27. Jeon, I.Y.; Shin, Y.R.; Sohn, G.J.; Choi, H.J.; Bae, S.Y.; Mahmood, J.; Dai, L. Edge-carboxylated graphene nanosheets via ball milling. Proc. Natl. Acad. Sci. USA 2012, 109, 5588-5593. [CrossRef] open in new tab
  28. Jeon, I.Y.; Bae, S.Y.; Seo, J.M.; Baek, J.B. Scalable Production of Edge-Functionalized Graphene Nanoplatelets via Mechanochemical Ball-Milling. Adv. Fun. Mater. 2015, 25, 6961-6975. [CrossRef] open in new tab
  29. Fan, X.; Chang, D.W.; Chen, X.; Baek, J.B.; Dai, L. Functionalized graphene nanoplatelets from ball milling for energy applications. Curr. Opin. Chem. Eng. 2016, 11, 52-58. [CrossRef] open in new tab
  30. Yan, L.; Lin, M.; Zeng, C.; Chen, Z.; Zhang, S.; Zhao, X.; Guo, M. Electroactive and biocompatible hydroxyl-functionalized graphene by ball milling. J. Mater. Chem. 2012, 22, 8367-8371. [CrossRef] open in new tab
  31. Leon, V.; Quintana, M.; Herrero, M.A.; Fierro, J.L.; de la Hoz, A.; Prato, M.; Vazquez, E. Few-layer graphenes from ball-milling of graphite with melamine. Chem. Commun. 2011, 47, 10936-10938. [CrossRef] [PubMed] open in new tab
  32. Mahmoud, A.E.D.; Stolle, A.; Stelter, M. Sustainable Synthesis of High-Surface-Area Graphite Oxide via DryBall Milling. ACS Sustain. Chem. Eng. 2018, 6, 6358-6369. [CrossRef] open in new tab
  33. Ramesha, G.K.; Kumara, A.V.; Muralidhara, H.B.; Sampath, S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interfce Sci. 2011, 361, 270-277. [CrossRef] [PubMed] open in new tab
  34. Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol. 2014, 89, 196-205. [CrossRef] open in new tab
  35. Kondratwicz, I.;Żelechowska, K. Graphene Oxide as Mine of Knowledge: Using Graphene Oxide to Teach Undergraduate Students Core Chemistry and Nanotechnology Concept. J. Chem. Educ. 2017, 94, 764-768. [CrossRef] open in new tab
  36. Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806-4814. [CrossRef] open in new tab
  37. Wojtoniszak, M.; Mijowska, E. Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale. J. Nanopart. Res. 2012, 14, 1248. [CrossRef] open in new tab
  38. Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225-229. [CrossRef] open in new tab
  39. Romanenko, V.D.; Kukhar, V.P. 1-Amino-1,1-bisphosphonates-Fundamental Syntheses and New Developments. ChemInform 2012, 43, 127-166. [CrossRef] open in new tab
  40. Kaabak, L.V.; Kuz'mina, N.E.; Khudenko, A.V.; Tomilov, A.P. Improved Synthesis of 1-Aminoethylidenediphosphonic Acid. Russ. J. Gen. Chem. 2006, 76, 1673-1674. [CrossRef] open in new tab
  41. Lecouvey, M.; Leroux, Y. Synthesis of 1-Hydroxy-1,1-bisphosphonates. Heteroatom Chem. 2000, 11, 556-561. [CrossRef] open in new tab
  42. Chmielewska, E.; Kafarski, P. Synthetic Procedures Leadingtowards Aminobisphosphonates. Molecules 2016, 21, 1474. [CrossRef] open in new tab
  43. Kieczykowski, G.R.; Jobson, R.B.; Melillo, D.G.; Reinhold, D.F.; Grenda, V.J.; Shinkai, I. Preparation of (4-Amino-1-Hydroxybutylidene)bisphosphonic Acid Sodium Salt, MK 217(Alendronate Sodium). open in new tab
  44. An Improved Procedure for the Preparation of 1-Hydroxy-1,1-bisphosphonic Acids. J. Org. Chem. 1995, 60, 8310-8312. [CrossRef] open in new tab
  45. Simonin, J.P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254-263. [CrossRef] open in new tab
  46. Do, D.D. Adsorption Analysis: Equilibria and Kinetics; Imperial College Press: Great Britain, London, UK, 1998; Volume 2.
  47. Żelechowska, K.; Sobota, D.; Cieślik, B.; Prześniak-Welenc, M.; Łapiński, M.; Biernat, J.F. Bis-phosphonated carbon nanotubes: One pot synthesis and their application as efficient adsorbent of mercury. Fuller. Nanotubes Carbon Nanostruct. 2018, 26, 269-277. [CrossRef] open in new tab
  48. King, A.A.; Davies, B.R.; Noorbehesht, N.; Newman, P.; Church, T.L.; Harris, A.T.; Minett, A.I. A New Raman Metric for the Characterisation of Graphene oxide and its Derivatives. Sci. Rep. 2016, 6, 19491. [CrossRef] [PubMed] open in new tab
  49. Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon N. Y. 2010, 48, 4466-4474. [CrossRef] open in new tab
  50. Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Bieloshapka, I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J. Electron Spectrosc. Relat. Phenomena 2014, 195, 145-154. [CrossRef] open in new tab
  51. Düngen, P.; Schlögl, R.; Heumann, S. Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups. Carbon 2018, 130, 614-622. [CrossRef] open in new tab
  52. Kumar, A.S.; Jiang, S.J. Preparation and characterization of exfoliated graphene oxide-L-cystine as an effective adsorbent of Hg(II) adsorption. RSC Adv. 2015, 5, 6294-6304. [CrossRef] open in new tab
  53. Kumar, A.S.; Jianga, S.-J.; Tseng, W.-L. Facile synthesis and characterization of thiol-functionalized graphene oxide as effective adsorbent for Hg(II). J. Environ. Chem. Eng. 2016, 4, 2052-2065. [CrossRef] open in new tab
  54. Henriques, B.; Goncalves, G.; Emami, N.; Pereira, E.; Vila, M.; Marques, P.A.A.P. Optimized graphene oxide foam with enhanced performance and high selectivity for mercury removal from water. J. Hazard. Mater. 2016, 301, 453-461. [CrossRef] [PubMed] open in new tab
  55. Awad, S.F.; AbouZied, K.M.; El-Maaty, W.M.A.; El-Wakil, A.M.; El-Shall, M.S. Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab. J. Chem. in press. [CrossRef] open in new tab
  56. Gao, W.; Majumder, M.; Alemany, L.B.; Narayanan, T.N.; Ibarra, M.A.; Pradhan, B.K.; Ajayan, P.M. Engineered Graphite Oxide Materials for Application in Water Purification. ACS Appl. Mater. Interfaces 2011, 3, 1821-1826. [CrossRef] [PubMed] open in new tab
  57. Nuengmatcha, P.; Mahachai, R.; Chanthai, S. Adsorption of Functionalized Thiol-Graphene Oxide for Removal of Mercury from Aqueous Solution. Asian J. Chem. 2015, 27, 4167-4170. [CrossRef] open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 177 times

Recommended for you

Meta Tags