Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology - Publication - Bridge of Knowledge

Search

Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology

Abstract

Pharmaceutical residues are an emerging environmental problem. It is strongly confirmed that pharmaceuticals are present in soils and environmental waters (surface, marine and even groundwater), and that wastewater treatment plant (WWTP) effluents are the main source of pharmaceuticals in the watershed. The aim of this studywas to recognize the spatial distribution and seasonal changes of selected pharmaceuticals in conventional WWTP with Sludge Treatment Reed Beds (STRBs) technology used for dewatering and stabilization of sewage sludge, because these systems have never been studied in terms of pharmaceuticals distribution or removal potential. The researchwas conducted in conventionalWWTP in Gniewino, where raw wastewaterwas treated usingmechanical, biological and chemical removal of the organic matter and nutrients, and sewage sludge was treated with STRB. Determinations of pharmaceuticals (non-steroidal anti-inflammatory drugs - ibuprofen, paracetamol, flurbiprofen, naproxen, diclofenac and its metabolites) and basic parameters were carried out in samples of influent and effluent fromWWTP and in the liquid phase of surplus activated sludge (SAS) aswell as rejectwater from STRB. The potential of removal varied among target pharmaceuticals. Ibuprofen and naproxen were completely removed by the standard applied technology of the Gniewino WWTP. Diclofenac and its metabolites were the chemicals with the lowest removal potential in wastewater and the highest detection frequency. These pharmaceuticals were also detected in the liquid phase of SAS as well as in reject water. However, removal potential when using STRB was higher than 94% (mostly higher than 99%), independent of the season. Indeed, the STRB technology is not only efficient in sludge dewatering and nutrient removal (primary purpose), but also elimination of polar pollutants. Nevertheless, removal in STRB did not mean that pharmaceuticals were totally eliminated because these compounds could be “trapped and stored” in beds (by the process of sorption) or transformed into other products. This study is a starting point for further exploration of STRB technology for elimination of emerging pollutants.

Citations

  • 5 9

    CrossRef

  • 0

    Web of Science

  • 5 2

    Scopus

Cite as

Full text

download paper
downloaded 219 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SCIENCE OF THE TOTAL ENVIRONMENT no. 647, pages 149 - 157,
ISSN: 0048-9697
Language:
English
Publication year:
2019
Bibliographic description:
Kołecka K., Gajewska M., Stepnowski P., Caban M.: Spatial distribution of pharmaceuticals in conventional wastewater treatment plant with Sludge Treatment Reed Beds technology// SCIENCE OF THE TOTAL ENVIRONMENT. -Vol. 647, (2019), s.149-157
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.scitotenv.2018.07.439
Bibliography: test
  1. Arlos, M.J., Bragg, L.M., Parker, W.J., Servos, M.R. (2014). Distribution of selected antiandrogens and 465 pharmaceuticals in a highly impacted watershed. Water Res. 72, 40-50. 466 doi:10.1016/j.watres.2014.11.008 open in new tab
  2. Bendz, D., Paxéus, N.A., Ginn, T.R., Loge, F.J. (2005). Occurrence and fate of pharmaceutically active 468 compounds in the environment, a case study: Hoje River in Sweden. J. Hazard Mater. 122, 195- 469 204 open in new tab
  3. Biel-Maeso, M., Baena-Nogueras, R.M., Corada-Fernández, C., Lara-Martín, P.A. (2018). Occurrence, 471 distribution and environmental risk of pharmaceutically active compounds (PhACs) in coastal and 472 ocean waters from the Gulf of Cadiz (SW Spain). Sci. Total Environ. 612, 649-659. 473 doi:10.1016/j.scitotenv.2017.08.279 open in new tab
  4. Borecka, M., Siedlewicz, G., Haliński, Ł.P., Sikora, K., Pazdro, K., Stepnowski, P., Białk-Bielińska, A. 475 (2015). Contamination of the southern Baltic Sea waters by the residues of selected 476 pharmaceuticals: Method development and field studies. Mar. Pollut. Bull. 94, 62-71. 477 doi:10.1016/j.marpolbul.2015.03.008 open in new tab
  5. Bort, R., Macé, K., Boobis, A., Gómez-Lechón, M.J., Pfeifer, A., Castell, J. (1999). Hepatic metabolism of 479 diclofenac: Role of human CYP in the minor oxidative pathways. Biochem. Pharmacol. 58, 787- 480 796. doi:10.1016/S0006-2952(99)00167-7 open in new tab
  6. Boxall, A.B. a, Rudd, M. a, Brooks, B.W., Caldwell, D.J., Choi, K., Hickmann, S., Innes, E., Ostapyk, K., 482 open in new tab
  7. Staveley, J.P., Verslycke, T., Ankley, G.T., Beazley, K.F., Belanger, S.E., Berninger, J.P., 483
  8. Carriquiriborde, P., Coors, A., De Leo, P.C., Dyer, S.D., Ericson, J.F., Gagné, F., Giesy, J.P., Gouin, 484
  9. T., Hallstrom, L., Karlstrom, M. V, Larsson, J.D., Lazorchak, J.M., Mastrocco, F., McLaughlin, A., 485
  10. McMaster, M.E., Meyerhoff, R.D., Moore, R., Parrott, J.L., Snape, J.R., Murray-Smith, R., Servos, 486
  11. M.R., Sibley, P.K., Straub, J.O., Szabo, N.D., Topp, E., Tetreault, G.R., Trudeau, V.L., Van Der Kraak, 487
  12. G. (2012). Review Pharmaceuticals and Personal Care Products in the Environment : What Are 488 the Big Questions ? Environ. Health Perspect. 120, 1221-1229. open in new tab
  13. Brix, H. (2017). Sludge dewatering and mineralization in sludge treatment reed beds. Water 490 (Switzerland) 9. doi:10.3390/w9030160 open in new tab
  14. Caban, M., Lis, E., Kumirska, J., Stepnowski, P. (2015). Determination of pharmaceutical residues in 492 drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks 493 and DIMETRIS derivatization. Sci. Total Environ. 538, 402-411. 494 doi:10.1016/j.scitotenv.2015.08.076 open in new tab
  15. Caban, M., Mioduszewska, K., Łukaszewicz, P., Migowska, N., Stepnowski, P., Kwiatkowski, M., 496 open in new tab
  16. Kumirska, J., Lukaszewicz, P., Migowska, N., Stepnowski, P., Kwiatkowski, M., Kumirska, J. (2014).
  17. A new silylating reagent -dimethyl(3,3,3-trifluoropropyl)silyldiethylamine -for the derivatisation 498 of non-steroidal anti-inflammatory drugs prior to gas chromatography-mass spectrometry 499 analysis. J. Chromatogr. A 1346, 107-116. doi:10.1016/j.chroma.2014.04.054 open in new tab
  18. Carvalho, P., Zhang, Y., Lv, T., Zhang, L., Casas, M., Arias, C., Bester, K., Brix, H. (2016). Removal and 501 transformation of ibuprofen in constructed wetlands systems, Proceedings of XV IWA Specialist 502 Conference on Wetland Systems for Water Pollution Control, 4-9 September 2016, ECS, Gdańsk, 503 Poland 504
  19. Chen, Y., Vymazal, J., Březinová, T., Koželuh, M., Kule, L., Huang, J., Chen, Z. (2016). Occurrence, 505 removal and environmental risk assessment of pharmaceuticals and personal care products in 506 rural wastewater treatment wetlands. Sci. Total Environ. 566-567, 1660-1669. 507 doi:10.1016/j.scitotenv.2016.06.069 open in new tab
  20. Clara, M., Strenn, B., Gans, O., Martinez, E., Kreuzinger, B., Kroiss, H. (2005). Removal of selected 509 pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and 510 conventional wastewater treatment plants. Water Res. 39, 4797-4807. open in new tab
  21. Dodgen, L.K., Li, J., Wu, X., Lu, Z., Gan, J.J. (2014). Transformation and removal pathways of four 512 common PPCP/EDCs in soil. Environ. Pollut. 193, 29-36. doi:10.1016/j.envpol.2014.06.002 open in new tab
  22. Farré, M. la, Pérez, S., Kantiani, L., Barceló, D. (2008). Fate and toxicity of emerging pollutants, their 514 metabolites and transformation products in the aquatic environment. TrAC -Trends Anal. Chem. 515 27, 991-1007. doi:10.1016/j.trac.2008.09.010 open in new tab
  23. Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., Fava, F. (2014). Emerging pollutants in the 517 environment: present and future challenges in biomonitoring, ecological risks and 518 bioremediation. N. Biotechnol. 32, 147-156. doi:10.1016/j.nbt.2014.01.001 open in new tab
  24. Hijosa-Valsero, M., Reyes-Contreras, C., Domínguez, C., Bécares, E., Bayona, J.M. (2016). Behaviour of 520 pharmaceuticals and personal care products in constructed wetland compartments: Influent, 521 effluent, pore water, substrate and plant roots. Chemosphere 145, 508-517. 522 doi:10.1016/j.chemosphere.2015.11.090 open in new tab
  25. Imfeld, G., Braeckevelt, M., Kuschk, P., Richnow, H.H. (2009). Monitoring and assessing processes of 524 organic chemicals removal in constructed wetlands. Chemosphere 74, 349-362. 525 doi:10.1016/j.chemosphere.2008.09.062 open in new tab
  26. Jarosova, B., Blaha, L., Vrana, B., Randak, T., Grabic, R., Giesy, J.P., Hilscherova, K. (2012). Changes in 527 concentrations of hydrophilic organic contaminants and of endocrine-disrupting potential 528 downstream of small communities located adjacent to headwaters. Environ. Int. 45, 22-31. 529 doi:10.1016/j.envint.2012.04.001 open in new tab
  27. Jelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., Barcelo, D. (2011). open in new tab
  28. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during 532 wastewater treatment. Water Res. 45, 1165-1176. doi:10.1016/j.watres.2010.11.010 open in new tab
  29. Joss, A., Keller, E., Alder, A., Göbel, A., McArdell, Ch. S., Ternes, T., Siegrist, H. (2005). Removal of 534 pharmaceuticals and fragrances in biological wastewater treatment. Water Res. 39, 3139-3152 open in new tab
  30. Kasprzyk-Hordern, B., Dinsdale R.M., Guwy, A.J. (2009). The removal of pharmaceuticals, personal care 536 products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on 537 the quality of receiving waters. Wat. Res. 43, 363-380. open in new tab
  31. Kołecka, K., Gajewska, M., Obarska-Pempkowiak, H., Rohde, D. (2017). Integrated dewatering and 539 stabilization system as an environmentally friendly technology in sewage sludge management in 540 open in new tab
  32. Poland. Ecol. Eng. 98, 346-353. doi:10.1016/j.ecoleng.2016.08.011 open in new tab
  33. Kołecka, K., Obarska-Pempkowiak, H. (2008). The quality of sewage sludge stabilized for a long time in 542 reed basins. Environ. Prot. Eng. 34, 13-20. open in new tab
  34. Kołecka, K., Obarska-Pempkowiak, H. (2013). Potential fertilizing properties of sewage sludge treated 544 in the sludge treatment reed beds (STRB). Water Sci. Technol. 68, 1412-1418. 545 doi:10.2166/wst.2013.393 open in new tab
  35. Lahti, M., Oikari, A. (2011). Microbial transformation of pharmaceuticals naproxen, bisoprolol, and 547 diclofenac in aerobic and anaerobic environments. Arch. Environ. Contam. Toxicol. 61, 202-210. 548 doi:10.1007/s00244-010-9622-2 open in new tab
  36. Li, Y., Zhu, G., Ng, W.J., Tan, S.K. (2014). A review on removing pharmaceutical contaminants from 550 wastewater by constructed wetlands: Design, performance and mechanism. Sci. Total Environ. 551 468-469, 908-932. doi:10.1016/j.scitotenv.2013.09.018 open in new tab
  37. Lindqvist, N., Tuhkanen, T., Kronberg, L. (2005). Occurrence of acidic pharmaceuticals in raw and 553 treated sewages and in receiving waters. Water Res. 39, 2219-2228. 554 doi:10.1016/j.watres.2005.04.003 open in new tab
  38. Lonappan, L., Brar, S.K., Das, R.K., Verma, M., Surampalli, R.Y. (2016). Diclofenac and its transformation 556 products: Environmental occurrence and toxicity -A review. Environ. Int. 96, 127-138. 557 doi:10.1016/j.envint.2016.09.014 open in new tab
  39. Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C. (2014). A review on 559 the occurrence of micropollutants in the aquatic environment and their fate and removal during 560 wastewater treatment. Sci. Total Environ. 473-474, 619-641 open in new tab
  40. Matamoros, V., Arias, C., Brix, H., Bayona, J.M. (2009). Preliminary screening of small-scale domestic 562 wastewater treatment systems for removal of pharmaceutical and personal care products. Water 563 Res. 43, 55-62. doi:10.1016/j.watres.2008.10.005 open in new tab
  41. Matamoros, V., Bayona, J.M. (2006). Elimination of Pharmaceuticals and Personal Care Products in 565 open in new tab
  42. Subsurface Flow Constructed Wetlands. Environ. Sci. Technol. 40, 5811-5816. 566 doi:10.1021/es0607741 open in new tab
  43. Matamoros, V., Garci, J. (2005). Behavior of Selected Pharmaceuticals in Subsurface Flow Constructed 568 Wetlands : A Pilot-Scale Study 39, 5449-5454. open in new tab
  44. Migowska, N., Caban, M., Stepnowski, P., Kumirska, J. (2012). Simultaneous analysis of non-steroidal 570 anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas 571 chromatography-mass spectrometry and gas chromatography with electron capture detection. open in new tab
  45. Sci. Total Environ. 441, 77-88. doi:10.1016/j.scitotenv.2012.09.043 open in new tab
  46. Nakada, N., Tanishima, T., Shinohara, H., Kiri, K., Takada H. (2005). Pharmaceutical chemicals and 574 endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge 575 treatment Water Res. 40, 3297-3303 open in new tab
  47. Nielsen, S. (2003). Sludge drying reed beds. Water Sci. Technol. 48, 101-109. open in new tab
  48. Nielsen, S. (2007). Helsinge sludge reed bed system: reduction of pathogenic microorganisms. Water 578 Sci. Technol. 56, 175-82. open in new tab
  49. Nielsen, S. (2011). Sludge treatment reed bed facilities -organic load and operation problems. Water 580 Sci. 63, 941-947. open in new tab
  50. Okuda, T., Kobayashi, Y., Nagao, R., Yamashita, N., Tanaka, H., Tanaka, S., Fujii, S., Konishi, C., Houwa, 582 open in new tab
  51. I. (2016). Removal efficiency of 66 pharmaceuticals during wastewater treatment process in 583
  52. Japan. Water Sci Technol. 57, 65-71. doi: 10.2166/wst.2008.822. open in new tab
  53. Paxéus, N. (2004). Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, 585 open in new tab
  54. carbamazepine, b-blockers, trimethoprim and triclosan in conventional wastewater treatment 586 plants in five EU countries and their discharge to the aquatic environment. Water Sci. Technol. 587 50, 253-260. open in new tab
  55. Podlipná, R., Skálová, L., Seidlová, H., Szotáková, B., Kubíček, V., Stuchlíková, L., Jirásko, R., Vaněk, T., 589 open in new tab
  56. Vokřál, I. (2013). Biotransformation of benzimidazole anthelmintics in reed (Phragmites australis) 590 as a potential tool for their detoxification in environment. Bioresour. Technol. 144, 216-224. 591 doi:10.1016/j.biortech.2013.06.105 open in new tab
  57. Poirier-Larabie, S., Segura, P.A., Gagnon, C. (2016). Degradation of the pharmaceuticals diclofenac and 593 sulfamethoxazole and their transformation products under controlled environmental conditions. open in new tab
  58. Sci. Total Environ. 557-558, 257-267. doi:10.1016/j.scitotenv.2016.03.057 595 Polish norm PN-EN 1899-1:2002. Water quality − Determination of biochemical oxygen demand after 596 n days (BODn). open in new tab
  59. Polish norm PN-EN ISO 10304-1:2009 +AC:2012. Water quality − Determination of dissolved anions by 598 ion chromatography Part 1: Determination of bromides, chlorides, fluorides, nitrates, nitrites, 599 phosphates and sulphates. open in new tab
  60. Polish norm PN-EN ISO 6878:2006. Water quality − Determination of phosphorus − Spectrometric 601 method with ammonium molybdate. open in new tab
  61. Polish norm PN-ISO 15705:2005. Water quality − Determination of the chemical oxygen demand index 603 (SP-COD) − Mineralization method with using tight tubes. open in new tab
  62. Polish norm PN-ISO 5664:2002. Water quality − Determination of ammonium nitrogen − Distillation 605 method with titration. open in new tab
  63. Polish norm PN-73/C-04576.14. Water and wastewater − Determination of total nitrogen −Calculation 607 method taking into account the Kjeldahl nitrogen and nitrate nitrogen (III) and (V) open in new tab
  64. Santos, J.L., Aparicio, I., Callejón, M., Alonso, E. (2009). Occurrence of pharmaceutically active 609 compounds during 1-year period in wastewaters from four wastewater treatment plants in 610 open in new tab
  65. Seville (Spain). J. Hazard. Mater. 164, 1509-16. doi:10.1016/j.jhazmat.2008.09.073 open in new tab
  66. Sim, W.-J., Lee, J.-W., Lee, E.-S., Shin, S.-K., Hwang, S.-R., Oh, J.-E. (2011). Occurrence and distribution 612 of pharmaceuticals in wastewater from households, livestock farms, hospitals and 613 pharmaceutical manufactures. Chemosphere 82, 179-86. 614 doi:10.1016/j.chemosphere.2010.10.026 open in new tab
  67. Stülten, D., Zühlke, S., Lamshöft, M., Spiteller, M. (2008). Occurrence of diclofenac and selected 616 metabolites in sewage effluents. Sci. Total Environ. 405, 310-316. 617 doi:10.1016/j.scitotenv.2008.05.036 open in new tab
  68. Tarpani, R.R.Z., Azapagic, A. (2018). A methodology for estimating concentrations of pharmaceuticals 619 and personal care products (PPCPs) in wastewater treatment plants and in freshwaters. Sci. Total 620 Environ. 622-623, 1417-1430. doi:10.1016/j.scitotenv.2017.12.059 open in new tab
  69. Thiebault, T., Boussafir, M., Le Milbeau, C. (2017). Occurrence and removal efficiency of 622 pharmaceuticals in an urban wastewater treatment plant: mass balance, fate and consumption 623 assessment. Environ. Chem. Eng. 5, 2894-2902. doi:10.1016/j.jece.2017.05.039 open in new tab
  70. Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R., Buelna, G. (2017). Review on fate and 625 mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. 626 Biores. Technol. 224, 1-12 open in new tab
  71. Verlicchi, P., Al Aukidy, M., Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban 628 wastewater: removal, mass load and environmental risk after a secondary treatment -A review. open in new tab
  72. Sci. Total Environ. 429, 123-155. open in new tab
  73. Verlicchi, P., Zambello, E., Al Aukidy, M. (2013). Chapter 8-Removal of Pharmaceuticals by 631 Conventional Wastewater Treatment Plants. Comprehensive Analytical Chemistry, 62, 231-286 open in new tab
  74. Vymazal, J., Dvořáková Březinová, T., Koželuh, M., Kule, L. (2017). Occurrence and removal of 633 pharmaceuticals in four full-scale constructed wetlands in the Czech Republic -the first year of 634 monitoring. Ecol. Eng. 98, 354-364. doi:10.1016/j.ecoleng.2016.08.010 open in new tab
  75. Watkinson, A.J., Murby, E.J., Kolpin, D.W., Costanzo, S.D. (2009). The occurrence of antibiotics in an 636 urban watershed: From wastewater to drinking water. Sci. Total Environ. 407, 2711-2723. 637 doi:10.1016/j.scitotenv.2008.11.059 open in new tab
  76. Wu, X., Dodgen, L.K., Conkle, J.L., Gan, J. (2015). Plant uptake of pharmaceutical and personal care 639 products from recycled water and biosolids: A review. Sci. Total Environ. 536, 655-666. 640 doi:10.1016/j.scitotenv.2015.07.129 open in new tab
  77. Yu, J.T., Bouwer, J., Coelhan, M. (2006). Occurrence and biodegradability studies of selected 642 pharmaceuticals and personal care products in sewage effluent. Agricult. Water Manag. 86, 72- 643 80 open in new tab
  78. Zorita, S., Mårtensson, L., Mathiasson, L. (2009). Occurrence and removal of pharmaceuticals in a 645 municipal sewage treatment system in the south of Sweden. Sci. Total Environ. 407, 2760-2770. 646 doi:10.1016/j.scitotenv.2008.12.030 open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 223 times

Recommended for you

Meta Tags