Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle - Publication - MOST Wiedzy

Search

Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle

Abstract

Due to the rapid growth of 3D printing popularity, including fused deposition modeling (FDM), as one of the most common technologies, the proper understanding of the process and influence of its parameters on resulting products is crucial for its development. One of the most crucial parameters of FDM printing is the raster angle and mutual arrangement of the following filament layers. Presented research work aims to evaluate different raster angles (45°, 55°, 55’°, 60° and 90°) on the static, as well as rarely investigated, dynamic mechanical properties of 3D printed acrylonitrile butadiene styrene (ABS) materials. Configuration named 55’° was based on the optimal winding angle in filament-wound pipes, which provides them exceptional mechanical performance and durability. Also in the case of 3D printed samples, it resulted in the best impact strength, comparing to other raster angles, despite relatively weaker tensile performance. Interestingly, all 3D printed samples showed surprisingly high values of impact strength considering their calculated brittleness, which provides new insights into understanding the mechanical performance of 3D printed structures. Simultaneously, it proves that, despite extensive research works related to FDM technology, there is still a lot of investigation required for a proper understanding of this process.

Citations

  • 9

    CrossRef

  • 5

    Web of Science

  • 7

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 13, pages 1 - 12,
ISSN: 1996-1944
Language:
English
Publication year:
2020
Bibliographic description:
Galeja M., Hejna A., Kosmela P., Kulawik A.: Static and Dynamic Mechanical Properties of 3D Printed ABS as a Function of Raster Angle// Materials -Vol. 13,iss. 2 (2020), s.1-12
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma13020297
Bibliography: test
  1. Fafenrot, S.; Grimmelsmann, N.; Wortmann, M.; Ehrmann, A. Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials 2017, 10, 1199. [CrossRef] [PubMed] open in new tab
  2. Galeta, T.; Raos, P.; Stojšić, J.; Pakši, I. Influence of structure on mechanical properties of 3D printed objects. Procedia Eng. 2016, 149, 100-104. [CrossRef] open in new tab
  3. Travieso-Rodriguez, J.A.; Jerez-Mesa, R.; Llumà, J.; Traver-Ramos, O.; Gomez-Gras, G.; Roa Rovira, J.J. Mechanical properties of 3D-printing polylactic acid parts subjected to bending stress and fatigue testing. Materials 2019, 12, 3859. [CrossRef] [PubMed] open in new tab
  4. Kim, H.; Park, E.; Kim, S.; Park, B.; Kim, N.; Lee, S. Experimental study on mechanical properties of single- and dual-material 3D printed products. Procedia Manuf. 2017, 10, 887-897. [CrossRef] open in new tab
  5. Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442-458. [CrossRef] Materials 2020, 13, 297 open in new tab
  6. Wang, Y.T.; Yeh, Y.T. Effect of print angle on mechanical properties of FDM 3D structures printed with POM material. In Innovative Design and Development Practices in Aerospace and Automotive Engineering; open in new tab
  7. Bajpai, R.P., Chandrasekhar, U., Eds.; Springer: Singapore, 2017; pp. 157-167. [CrossRef] open in new tab
  8. Farbman, D.; McCoy, C. Materials testing of 3D printed ABS and PLA samples to guide mechanical design. In Proceedings of the ASME 2016 11th International Manufacturing Science and Engineering Conference, Blacksburg, VA, USA, 27 June-1 July 2016. [CrossRef] open in new tab
  9. Somireddy, M.; Czekanski, A. Mechanical characterization of additively manufactured parts by FE modeling of mesostructure mechanical characterization of additively manufactured parts by FE modeling of mesostructure. J. Manuf. Mater. Process. 2017, 12, 18. [CrossRef] open in new tab
  10. Quanjin, M.; Rejab, M.R.M.; Kaige, J.; Idris, M.S.; Harith, M.N. Filament winding technique, experiment and simulation analysis on tubular structure. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012029. [CrossRef] open in new tab
  11. Reza Khoshravan Azar, M.; Emami Satellou, A.A.; Shishesaz, M.; Salavati, B. Calculating the optimum angle of filament-wound pipes in natural gas transmission pipelines using approximation methods. J. Press. Vessel Technol. 2013, 135, 021702. [CrossRef] open in new tab
  12. Arikan, H. Failure analysis of (±55 • ) 3 filament wound composite pipes with an inclined surface crack under static internal pressure. Compos. Struct. 2010, 92, 182-187. [CrossRef] open in new tab
  13. Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018, 69, 157-166. [CrossRef] open in new tab
  14. Rousseau, J.; Perreux, D.; Verdière, N. The influence of winding patterns on the damage behaviour of filament-wound pipes. Compos. Sci. Technol. 1999, 59, 1439-1449. [CrossRef] open in new tab
  15. Rajpurohit, S.R.; Dave, H.K. Effect of process parameters on tensile strength of FDM printed PLA part. Rapid Prototyp. J. 2018, 24, 1317-1324. [CrossRef] open in new tab
  16. Wu, W.; Geng, P.; Li, G.; Zhao, D.; Zhang, H.; Zhao, J. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials 2015, 8, 5834-5846. [CrossRef] [PubMed] open in new tab
  17. Villacres, J.; Nobes, D.; Ayranci, C. Additive manufacturing of shape memory polymers: effects of print orientation and infill percentage on mechanical properties. Rapid Prototyp. J. 2018, 24, 744-751. [CrossRef] open in new tab
  18. Hamed, A.F.; Khalid, Y.A.; Sapuan, S.M.; Hamdan, M.M.; Younis, T.S.; Sahari, B.B. Effects of winding angles on the strength of filament wound composite tubes subjected to different loading modes. Polym. Polym. Compos. 2007, 15, 199-206. [CrossRef] open in new tab
  19. Naseva, S.; Srebrenkoska, V.; Risteska, S.; Stefanovska, M.; Srebrenkoska, S. Mechanical properties of filament wound pipes: Effects of winding angles. Qual. Life 2015, 6, 10-15. [CrossRef] open in new tab
  20. McKeen, L.W. Introduction to plastics and elastomers. In Effect of Temperature and Other Factors on Plastics and Elastomers (Second Edition); open in new tab
  21. McKeen, L.W., Ed.; William Andrew Publisher: Norwich, NY, USA, 2008; pp. 1-39. [CrossRef] open in new tab
  22. Brostow, W.; Hagg Lobland, H.E.; Narkis, M. Sliding wear, viscoelasticity, and brittleness of polymers. J. Mater. Res. 2006, 21, 2422-2428. [CrossRef] open in new tab
  23. Fernandes, C.; Pontes, A.J.; Viana, J.C.; Gaspar-Cunha, A. Modeling and optimization of the injection-molding process: A review. Adv. Polym. Technol. 2016, 37, 429-449. [CrossRef] open in new tab
  24. Fang, H.; Li, B.; Wang, F.; Wang, Y.; Cui, C. The mechanical behaviour of drainage pipeline under traffic load before and after polymer grouting trenchless repairing. Tunn. Undergr. Space Technol. 2018, 74, 185-194. [CrossRef] open in new tab
  25. Álvarez, K.; Lagos, R.F.; Aizpun, M. Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts. Ingeniería Investig. 2016, 36, 110-116. [CrossRef] open in new tab
  26. Richter, C.; Schmülling, S.; Ehrmann, A.; Finsterbusch, K. FDM printing of 3D forms with embedded fibrous materials. Appl. Mech. Mater. 2015, 2015, 961-969. [CrossRef] open in new tab
  27. Matsuoka, S. Thermodynamic aspects of brittleness in glassy polymers. In Toughness and Brittleness of Plastics; open in new tab
  28. Deanin, R.D., Crugnola, A.M., Eds.; American Chemical Society: Washington, DC, USA, 1976; pp. 3-7. [CrossRef] open in new tab
  29. Menges, G.; Boden, H.E. Deformation and failure of thermoplastics on impact. In Failure of Plastics; open in new tab
  30. Brostow, W., Corneliussen, R.D., Eds.; Hanser Publishers: Munich, Germany, 1986; p. 179.
  31. Brostow, W.; Hagg Lobland, H.E.; Khoja, S. Brittleness and toughness of polymers and other materials. Mater. Lett. 2015, 159, 478-480. [CrossRef] open in new tab
  32. Caminero, M.A.; Chacón, J.M.; García-Moreno, I.; Reverte, J.M. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Polym. Test. 2018, 68, 415-423. [CrossRef] open in new tab
  33. Harding, J.; Wood, E.O.; Campbell, J.D. Tensile testing of materials at impact rates of strain. J. Mech. Eng. Sci. 1960, 2, 88-96. [CrossRef] open in new tab
  34. Brostow, W.; Hagg Lobland, H.E. Brittleness of materials: implications for composites and a relation to impact strength. J. Mater. Sci. 2009, 45, 242-250. [CrossRef] open in new tab
  35. Portella, E.H.; Romanzini, D.; Angrizani, C.C.; Amico, S.C.; Zattera, A.J. Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Mater. Res. 2016, 19, 542-547. [CrossRef] open in new tab
  36. Xing, J.; Geng, P.; Yang, T. Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure. Compos. Struct. 2015, 131, 868-877. open in new tab
  37. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 50 times

Recommended for you

Meta Tags