Structure and thermoelectric properties of Cs-Bi-Te alloys fabricated by different routes of reduction of oxide reagents - Publication - Bridge of Knowledge

Search

Structure and thermoelectric properties of Cs-Bi-Te alloys fabricated by different routes of reduction of oxide reagents

Abstract

Cesium-bismuth-telluride polycrystalline materials were fabricated using a cost-effective method based on a reduction of oxide reagents, leading to a production of a material with good thermoelectric properties. Several samples with various initial stoichiometry were prepared by melting of oxide powders at 1050 °C, quenching, milling to powders and then reducing in pure hydrogen at 400 °C. Another concept was to obtain the CsBi4Te6 material without a melting stage. Composition of the samples was analyzed by the XRD and EDX methods. The sample with 96% of CsBi4Te6 phase was obtained in a way of reduction of oxide reagents. Thermoelectric properties of fabricated samples were also investigated.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Cite as

Full text

download paper
downloaded 102 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SOLID STATE SCIENCES no. 73, pages 41 - 50,
ISSN: 1293-2558
Language:
English
Publication year:
2017
Bibliographic description:
Gostkowska N., Miruszewski T., Trawiński B. J., Bochentyn B., Kusz B.: Structure and thermoelectric properties of Cs-Bi-Te alloys fabricated by different routes of reduction of oxide reagents// SOLID STATE SCIENCES. -Vol. 73, (2017), s.41-50
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.solidstatesciences.2017.07.016
Bibliography: test
  1. Duck-Young Chung, Tim P. Hogan, Melissa Rocci-Lane, Paul Brazis, John R. Ireland, Carl R. Kannewurf, Marina Bastea, Ctirad Uher, Mercouri G. Kanatzidis, A new thermoelectric material: CsBi 4 Te 6 , J. Am. Chem. Soc. 126 (20) (2004) 6414e6428, https://doi.org/10.1021/ja039885f. open in new tab
  2. G.A. Slack, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, 1995, p. 407. open in new tab
  3. Y. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, G.J. Snyder, High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping, Adv. Funct. Mater. 21 (2011) 241e249, https://doi.org/10.1002/ adfm.201000878. open in new tab
  4. S.K. Mishra, S. Satpathy, O. Jepsen, Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide, J. Phys. Condens. Matter 9 (2) (1997) 461. open in new tab
  5. O. Yamashita, S. Tomiyoshi, K. Makita, Bismuth telluride compounds with high thermoelectric figures of merit, J. Appl. Phys. 93 (1) (2003) 368e374, https:// doi.org/10.1063/1.1525400. open in new tab
  6. T. Schr€ oder, T. Rosenthal, N. Giesbrecht, M. Nentwig, S. Maier, H. Wang, et al., Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials induced by phase transitions associated with vacancy ordering, Inorg. Chem. 53 (14) (2014) 7722e7729, https://doi.org/10.1021/ic5010243. open in new tab
  7. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, et al., Enhanced thermo- electric figure-of-merit in nanostructured p-type silicon germanium bulk al- loys, Nano Lett. 8 (12) (2008) 4670e4674, https://doi.org/10.1021/nl8026795. open in new tab
  8. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Müller, C. Gatti, Y. Zhang, M. Rowe, M. Muhammed, The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3, Adv. Funct. Mater. 14 (2004) 1189e1196, https://doi.org/10.1002/adfm.200400109. open in new tab
  9. G. Nolas, J.L. Cohn, G.A. Slack, S.B. Schujman, Semiconducting Ge clathrates: promising candidates for thermoelectric applications, Appl. Phys. Lett. 73 (2) (1998) 178e180, https://doi.org/10.1063/1.121747. open in new tab
  10. B. Du, H. Li, J. Xu, X. Tang, C. Uher, Enhanced figure-of-merit in Se-doped p- type AgSbTe2 thermoelectric compound, Chem. Mater. 22 (19) (2010) 5521e5527, https://doi.org/10.1021/cm101503y. open in new tab
  11. Y. Miyazaki, K. Kudo, M. Akoshima, Y. Ono, Y. Koike, T. Kajitani, Low-tem- perature thermoelectric properties of the composite crystal [Ca 2CoO 3.34] 0.614 [CoO 2], Jpn. J. Appl. Phys. 39 (6A) (2000) L531, https://doi.org/10.1143/ JJAP.39.L531. open in new tab
  12. Y.S. Hor, A. Richardella, P. Roushan, Y. Xia, J.G. Checkelsky, A. Yazdani, et al., p- type Bi 2 Se 3 for topological insulator and low-temperature thermoelectric applications, Phys. Rev. B 79 (19) (2009) 195208,, https://doi.org/10.1103/ PhysRevB.79.195208. open in new tab
  13. D.Y. Chung, S.D. Mahanti, W. Chen, C. Uher, M.G. Kanatzidis, Anisotropy in thermoelectric properties of CsBi 4 Te 6, in: MRS Proceedings, vol. 793, Cambridge University Press, 2003, https://doi.org/10.1557/PROC-793-S6.1. S6e1. open in new tab
  14. A. Datta, G.S. Nolas, Solution-based synthesis and low-temperature transport properties of CsBi4Te6, ACS Appl. Mater. interfaces 4 (2) (2012) 772e776, https://doi.org/10.1021/am201411g. open in new tab
  15. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, et al., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Sci- ence 320 (5876) (2008) 634e638, https://doi.org/10.1126/science.1156446. open in new tab
  16. J. Yang, T. Aizawa, A. Yamamoto, T. Ohta, Thermoelectric properties of p-type (Bi 2 Te 3) x (Sb 2 Te 3) 1À x prepared via bulk mechanical alloying and hot pressing, J. Alloy. Compd. 309 (1) (2000) 225e228, https://doi.org/10.1016/ S0925-8388(00)01063-X. open in new tab
  17. H. Wang, J.F. Li, C.W. Nan, M. Zhou, W. Liu, B.P. Zhang, T. Kita, High-perfor- mance Ag 0.8 Pb 18þ x SbTe 20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering, Appl. Phys. Lett. 88 (9) (2006) 092104, https://doi.org/10.1063/1.2181197. open in new tab
  18. C.H. Kuo, C.S. Hwang, M.S. Jeng, W.S. Su, Y.W. Chou, J.R. Ku, Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering, J. Alloy. Compd. 496 (1) (2010) 687e690, https://doi.org/10.1016/j.jallcom.2010.02.171. open in new tab
  19. Y. Kumashiro, K. Nakamura, K. Sato, M. Ohtsuka, Y. Ohishi, M. Nakano, Y. Doi, The properties of BeSb thin films prepared by molecular flow region PVD process, J. Solid State Chem. 177 (2) (2004) 533e536, https://doi.org/10.1016/ open in new tab
  20. Post-print of: Gostkowska N., Miruszewski T., Trawiński B., Bochentyn B., Kusz B.: Structure and thermoelectric properties of Cs-Bi-Te alloys fabricated by different routes of reduction of oxide reagents. SOLID STATE SCIENCES. Vol. 73, (2017), p. 41-50. DOI: 10.1016/j.solidstatesciences.2017.07.016 open in new tab
  21. j.jssc.2003.05.003. open in new tab
  22. Y. Kumashiro, T. Yokoyama, Y. Ando, Thermoelectric properties of boron and boron phosphide CVD wafers, in: Thermoelectrics, 1998. Proceedings ICT 98. XVII International Conference on, IEEE, 1998, May, pp. 591e594. https://doi. org/10.1109/ICT.1998.740448. open in new tab
  23. H. Lin, H. Chen, J.S. Yu, Y.J. Zheng, P.F. Liu, M.A. Khan, L.M. Wu, CsBi 4 Te 6: a new facile synthetic method and mid-temperature thermoelectric perfor- mance, Dalton Trans. 45 (30) (2016) 11931e11934, https://doi.org/10.1039/ C6DT02109C. open in new tab
  24. B. Bochentyn, J. Karczewski, T. Miruszewski, B. Kusz, Structure and thermo- electric properties of BieTe alloys obtained by novel method of oxide sub- strates reduction, J. Alloy. Compd. 646 (2015) 1124e1132, https://doi.org/ 10.1016/j.jallcom.2015.06.127. open in new tab
  25. B. Bochentyn, T. Miruszewski, J. Karczewski, B. Kusz, Thermoelectric proper- ties of bismuth antimony telluride alloys obtained by reduction of oxide reagents, Mater. Chem. Phys. 177 (2016) 353e359, https://doi.org/10.1016/ j.matchemphys.2016.04.039. open in new tab
  26. B. Kusz, T. Miruszewski, B. Bochentyn, M. Łapi nski, J. Karczewski, Structure and thermoelectric properties of Te-Ag-Ge-Sb (TAGS) materials obtained by reduction of melted oxide substrates, J. Electron. Mater. 45 (2) (2016) 1085e1093, https://doi.org/10.1007/s11664-015-4251-1. open in new tab
  27. B. Bochentyn, J. Karczewski, T. Miruszewski, B. Kusz, Novel method of metal e oxide glass composite fabrication for use in thermoelectric devices, Mater. Res. Bull. 76 (2016) 195e204. open in new tab
  28. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizit€ atskonstanten und Leitf€ ahigkeiten der Mischk€ orper aus isotropen Substanzen, Ann. Phys. 4016 (1935) 636e664. open in new tab
  29. K.W. Schlichting, N.P. Padture, P.G. Klemens, Thermal conductivity of dense and porous yttria-stabilizied zirconia, J. Mater. Sci. 36 (12) (2016) 3003e3010. open in new tab
  30. Post-print of: Gostkowska N., Miruszewski T., Trawiński B., Bochentyn B., Kusz B.: Structure and thermoelectric properties of Cs-Bi-Te alloys fabricated by different routes of reduction of oxide reagents. SOLID STATE SCIENCES. Vol. 73, (2017), p. 41-50. DOI: 10.1016/j.solidstatesciences.2017.07.016 open in new tab
Verified by:
Gdańsk University of Technology

seen 156 times

Recommended for you

Meta Tags