Structure-rheology relationship of fully bio-based linear polyester polyols for polyurethanes - Synthesis and investigation - Publication - Bridge of Knowledge

Search

Structure-rheology relationship of fully bio-based linear polyester polyols for polyurethanes - Synthesis and investigation

Abstract

The synthesis of polyols from renewable substances as an alternative for petrochemical-based polyols play important matter in the polyurethane industry. In this work, the fully bio-based linear polyester polyols with different catalyst amounts were synthesized via two-step polycondensation method. The effect of various catalyst content on the structure and rheological behavior were established. Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance, Gel Permeation Chromatography and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight mass spectrometry allowed confirming the impact of the catalyst amount during synthesis on the molecular structure of the resulted polyols. Through the hyphenation of these sophisticated polymer characterization techniques, information on the molecular weight distribution was obtained. Moreover, it was found that the obtained polyols are non-Newtonian fluids. According to conducted measurements, it was observed that the poly(propylene succinate)s prepared with the use of the 0.25 wt.% and 0.30 wt.% catalyst revealed the structures and selected properties the most akin to design.

Citations

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 2 2

    Scopus

Cite as

Full text

download paper
downloaded 256 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
POLYMER TESTING no. 67, pages 110 - 121,
ISSN: 0142-9418
Language:
English
Publication year:
2018
Bibliographic description:
Parcheta P., Datta J.: Structure-rheology relationship of fully bio-based linear polyester polyols for polyurethanes - Synthesis and investigation// POLYMER TESTING. -Vol. 67, (2018), s.110-121
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.polymertesting.2018.02.022
Bibliography: test
  1. J.C. de Haro, J.F. Rodriguez, A. Perez, M. Carmona, Incorporation of azide 655 groups into bio-polyols, J. Clean. Prod. 138 (2016) 77-82. 656 doi:10.1016/j.jclepro.2016.05.012. open in new tab
  2. R. Miller, Evaluating the Properties and Performance of Susterra® 1, 3 658 Propanediol and Biosuccinium TM Sustainable Succinic Acid in TPU open in new tab
  3. Applications, in: CPI Polyurethanes 2012 Tech. Conf., 2012: pp. 1-19.
  4. C. Delhomme, D. Weuster-Botz, F.E. Kühn, Succinic acid from renewable 663 resources as a C4 building-block chemical-a review of the catalytic 664 possibilities in aqueous media, Green Chem. 11 (2009) 13. 665 doi:10.1039/b810684c. open in new tab
  5. I. Bechthold, K. Bretz, S. Kabasci, R. Kopitzky, A. Springer, Succinic acid: A 667 new platform chemical for biobased polymers from renewable resources, 668 open in new tab
  6. Chem. Eng. Technol. 31 (2008) 647-654. doi:10.1002/ceat.200800063. 669 33 open in new tab
  7. S. V. Kamzolova, A.I. Yusupova, E.G. Dedyukhina, T.I. Chistyakova, T.M. 670 open in new tab
  8. Kozyreva, I.G. Morgunov, Succinic acid synthesis by ethanol-grown yeasts, 671
  9. Food Technol. Biotechnol. 47 (2009) 144-152. open in new tab
  10. N. Nghiem, B. Davison, B. Suttle, G. Richardson, Production of succinic acid 673 by Anaerobiospirillum succiniciproducens, Apply Biochem. Biotechnol. 63/65 674 (1997) 565-576. http://www.ncbi.nlm.nih.gov/pubmed/24409768. open in new tab
  11. L. Montero de Espinosa, M. Meier, J. Ronda, M. Galia, V. Cadiz, Phosphorus- 676
  12. Containing Renewable Polyester-Polyols via ADMET Polymerization: 677 open in new tab
  13. Synthesis, Functionalization, and Radical Crosslinking, J. Polym. Sci. Part A 678
  14. Polym. Chem. 48 (2010) 1649-1660. doi:10.1002/pola. open in new tab
  15. J. Djonlagic, M.S. Nicolic, Chapter 6: Biodegradable polyesters: Synthesis and 680 open in new tab
  16. Physical Properties, in: A Handb. Appl. Biopolym. Technol. Synth. Degrad. open in new tab
  17. Appl., Royal Society of Chemistry, United Kingdom, 2011: pp. 149-196.
  18. D.N. Bikiaris, D.S. Achilias, Synthesis of poly(alkylene succinate) 683 biodegradable polyesters, Part I: Mathematical modelling of the esterification 684 reaction, Polymer (Guildf). 47 (2006) 4851-4860. 685 doi:10.1016/j.polymer.2008.06.026. 686 open in new tab
  19. M. Ionescu, Chemistry and Technology of Polyols for Polyurethane, First Edit, 687 open in new tab
  20. Rapra Technology Limited, United Kingdom, 2005. doi:10.1002/pi.2159. 688 open in new tab
  21. N.E. Alexander, J.P. Swanson, A. Joy, C. Wesdemiotis, Sequence analysis of 689 cyclic polyester copolymers using ion mobility tandem mass spectrometry, Int. open in new tab
  22. J. Mass Spectrom. (2017). doi:10.1016/j.ijms.2017.07.019. open in new tab
  23. A.P. Gies, S.M. Stow, J.A. McLean, D.M. Hercules, MALDI-TOF/TOF CID 692 study of poly(1,4-dihydroxybenzene terephthalate) fragmentation reactions, 693 open in new tab
  24. Polymer (Guildf). 64 (2015) 100-111. doi:10.1016/j.polymer.2015.03.021. 694 open in new tab
  25. R. Medimagh, S. Mghirbi, A. Saadaoui, A. Fildier, M. Desloir-Bonjour, G. Raffin, 695 open in new tab
  26. H.R. Kricheldorf, S. Chatti, Synthesis of biosourced polyether-amides from 1,4- 696 3,6-dianhydrohexitols: Characterization by NMR and MALDI-ToF mass 697 spectrometry, Comptes Rendus Chim. 16 (2013) 1127-1139. 698 doi:10.1016/j.crci.2013.05.004. open in new tab
  27. H. Ben Abderrazak, A. Fildier, S. Marque, D. Prim, H. Ben Romdhane, H.R. open in new tab
  28. Kricheldorf, S. Chatti, Cyclic and non cyclic aliphatic-aromatic polyesters 701 derived from biomass: Study of structures by MALDI-ToF and NMR, Eur.
  29. Polym. J. 47 (2011) 2097-2110. doi:10.1016/j.eurpolymj.2011.07.009. open in new tab
  30. L. Chikh, M. Tessier, A. Fradet, NMR and MALDI-TOF MS study of side 704 reactions in hyperbranched polyesters based on 2,2- 705 bis(hydroxymethyl)propanoic acid, Polymer (Guildf). 48 (2007) 1884-1892. 706 doi:10.1016/j.polymer.2007.02.019. open in new tab
  31. P. Król, B. Pilch-Pitera, Urethane oligomers as raw materials and intermediates 708 for polyurethane elastomers. Methods for synthesis, structural studies and 709 analysis of chemical composition, Polymer (Guildf). 44 (2003) 5075-5101. 710 doi:10.1016/S0032-3861(03)00431-2. open in new tab
  32. P. Król, B. Pilch-Pitera, Study on the synthesis of urethane oligomers as 712 intermediate products for the production of linear polyurethanes, Eur. Polym. J. 713 37 (2001) 251-266. doi:10.1016/S0014-3057(00)00116-6. open in new tab
  33. E. Głowińska, J. Datta, A mathematical model of rheological behavior of novel 715 bio-based isocyanate-terminated polyurethane prepolymers, Ind. Crops Prod. 716 60 (2014) 123-129. doi:10.1016/j.indcrop.2014.06.016. open in new tab
  34. A. Björn, P. Segura, D. La Monja, A. Karlsson, J. Ejlertsson, B.H. Svensson, 718 open in new tab
  35. Rheological Characterization, Intech. (2012) 64-76. doi:10.5772/32596. 719 open in new tab
  36. A.K. Schrock, H.S.C. Hamilton, B.D. Thompson, K. Ulrich, C. del Rosario, C.J. open in new tab
  37. Saint-Louis, W.D. Coggio, Development of structure-property relationships that 721 allow independent control of glass transition temperature, melting temperature, 722 and rheology in a library of bio-based succinate polyester polyols, Polymer 723 (Guildf). 114 (2017) 103-112. 724 doi:http://dx.doi.org/10.1016/j.polymer.2017.02.092. open in new tab
  38. N. Triantafillopoulos, Measurement of Fluid Rheology and Interpretation of 726 open in new tab
  39. Rheograms, Second Edi, Kaltec Scientific, Inc., Novi, Michigan, USA, 1988. 727 open in new tab
  40. PURINOVA, http://www.purinova.com/, (2017). open in new tab
  41. L. Zheng, C. Li, D. Zhang, G. Guan, Y. Xiao, D. Wang, Multiblock copolymers 729 composed of poly ( butylene succinate ) and poly ( 1 , 2-propylene succinate ): 730 Effect of molar ratio of diisocyanate to polyester-diols on crosslink densities , 731 thermal properties , mechanical properties and biodegradability, Polym. open in new tab
  42. Degrad. Stab. 95 (2010) 1743-1750. 733 doi:10.1016/j.polymdegradstab.2010.05.016. open in new tab
  43. S.S. Umare, A.S. Chandure, R.A. Pandey, Synthesis, characterization and 735 biodegradable studies of 1,3-propanediol based polyesters, Polym. Degrad. open in new tab
  44. Stab. 92 (2007) 464-479. doi:10.1016/j.polymdegradstab.2006.10.007. 737 36 open in new tab
  45. X. Ma, P.R. Chang, J. Yu, N. Wang, Preparation and properties of 738 biodegradable poly ( propylene carbonate )/ thermoplastic dried starch 739 composites, Carbohydr. Polym. 71 (2008) 229-234. 740 doi:10.1016/j.carbpol.2007.05.033. open in new tab
  46. D.N. Bikiaris, G.Z. Papageorgiou, D.S. Achilias, Synthesis and comparative 742 biodegradability studies of three poly(alkylene succinate)s, Polym. Degrad. open in new tab
  47. Stab. 91 (2006) 31-43. doi:10.1016/j.polymdegradstab.2005.04.030. open in new tab
  48. D.N. Bikiaris, G.Z. Papageorgiou, D.J. Giliopoulos, C.A. Stergiou, Correlation 745 between Chemical and Solid-State Structures and Enzymatic Hydrolysis in 746 Novel Biodegradable Polyesters . The Case of Poly ( propylene 747 alkanedicarboxylate ) s, Macromol. Boscience. 8 (2008) 728-740. 748 doi:10.1002/mabi.200800035. open in new tab
  49. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Thermal degradation 750 kinetics of the biodegradable aliphatic polyester, poly(propylene succinate), 751 open in new tab
  50. Polym. Degrad. Stab. 91 (2006) 60-68. 752 doi:10.1016/j.polymdegradstab.2005.04.028. open in new tab
  51. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Thermal degradation 754 mechanism of poly(ethylene succinate) and poly(butylene succinate): 755 Comparative study, Thermochim. Acta. 435 (2005) 142-150. 756 doi:10.1016/j.tca.2005.05.011. open in new tab
  52. L. Zheng, C. Li, W. Huang, X. Huang, Synthesis of high-impact biodegradable 758 multiblock copolymers comprising of poly ( butylene succinate ) and 759 hexamethylene diisocyanate as chain extender, Polym. Adv. Technol. 22 760 37 (2011) 279-285. doi:10.1002/pat.1530. open in new tab
  53. P. Kopczyńska, J. Datta, Single-phase product obtained via crude glycerine 762 depolymerisation of polyurethane elastomer: Structure characterisation and 763 rheological behaviour, Polym. Int. 65 (2016) 946-954. doi:10.1002/pi.5128. 764 open in new tab
  54. N.O. Pretorius, K. Rode, J.M. Simpson, H. Pasch, Analysis of complex phthalic 765 acid based polyesters by the combination of size exclusion chromatography 766 and matrix-assisted laser desorption/ionization mass spectrometry, Anal. Chim. open in new tab
  55. Acta. 808 (2014) 94-103. doi:10.1016/j.aca.2013.07.030. open in new tab
  56. J.C. Soutif, N.T.H. Doan, V. Montembault, Determination by MALDI-TOF MS of 769 the structures obtained from polytransesterification of diethyl 2,6- 770 pyridinedicarboxylate and poly(ethylene glycol), Eur. Polym. J. 42 (2006) 126- 771 132. doi:10.1016/j.eurpolymj.2005.07.026. open in new tab
  57. K. Wilczyński, Reologia w przetwórstwie tworzyw sztucznych, Wydawnictwo 773 Naukowo-Techniczne, Warszawa, 2001.
Verified by:
Gdańsk University of Technology

seen 179 times

Recommended for you

Meta Tags