Study of Different Advanced Oxidation Processes for Wastewater Treatment from Petroleum Bitumen Production at Basic pH - Publication - Bridge of Knowledge

Search

Study of Different Advanced Oxidation Processes for Wastewater Treatment from Petroleum Bitumen Production at Basic pH

Abstract

Effluents from production of petroleum bitumens were submitted to treatment by three different AOPs at basic pH (i.e., O3, H2O2 and the combination of O3 and H2O2, a so-called peroxone). The paper presents studies on the identification and monitoring of the volatile organic compounds (VOCs) degradation present in the effluents and formation of byproducts, COD, BOD5, sulfide ions, biotoxicity, and biodegradability changes during treatment. Peroxone at 25 °C with a ratio of oxidant in relation to the COD of the effluents (rox) of 0.49 achieved 43% and 34% of COD and BOD5 reduction resulting in the most effective AOP studied. S2– ions were effectively oxidized in all technologies studied. Ozonation at 25 °C and with a rox of 0.34 was the most effective process to degrade VOCs. Decrease in the biotoxicity was reported in O3 and peroxone processes. Byproduct formation in different AOPs was reported. These reductions revealed that these technologies are effective if used as pretreatment methods.

Citations

  • 7 8

    CrossRef

  • 0

    Web of Science

  • 8 0

    Scopus

Cite as

Full text

download paper
downloaded 679 times
Publication version
Accepted or Published Version
License
Copyright (2017 American Chemical Society)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH no. 56, edition 31, pages 8806 - 8814,
ISSN: 0888-5885
Language:
English
Publication year:
2017
Bibliographic description:
Boczkaj G., Fernandes A., Makoś P.: Study of Different Advanced Oxidation Processes for Wastewater Treatment from Petroleum Bitumen Production at Basic pH// INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH. -Vol. 56, iss. 31 (2017), s.8806-8814
DOI:
Digital Object Identifier (open in new tab) 10.1021/acs.iecr.7b01507
Bibliography: test
  1. Boczkaj, G.; Kaminśki, M.; Przyjazny, A. Process Control and Investigation of Oxidation Kinetics of Postoxidative Effluents Using Gas Chromatography with Pulsed Flame Photometric Detection (GC- PFPD). Ind. Eng. Chem. Res. 2010, 49 (24), 12654. open in new tab
  2. Boczkaj, G.; Przyjazny, A.; Kaminśki, M. New Procedures for Control of Industrial Effluents Treatment Processes. Ind. Eng. Chem. Res. 2014, 53, 1503. open in new tab
  3. Stepnowski, P.; Siedlecka, E. M.; Behrend, P.; Jastorff, B. Enhanced Photo-Degradation of Contaminants in Petroleum Refinery Wastewater. Water Res. 2002, 36, 2167. open in new tab
  4. Saien, J.; Shahrezaei, F. Organic Pollutants Removal from Petroleum Refinery Wastewater with Nanotitania Photocatalyst and UV Light Emission. Int. J. Photoenergy 2012, 2012, 1. open in new tab
  5. Shahrezaei, F.; Mansouri, Y.; Zinatizadeh, A. A. L.; Akhbari, A. Process Modeling and Kinetic Evaluation of Petroleum Refinery Wastewater Treatment in a Photocatalytic Reactor Using TiO2 Nanoparticles. Powder Technol. 2012, 221, 203. open in new tab
  6. Mota, A. L. N.; Albuquerque, L. F.; Beltrame, L. T. C.; Chiavone- Filho, O.; Machulek, A., Jr.; Nascimento, C. A. O. Advanced Oxidation Processes and Their Application in the Petroleum Industry: A Review. Brazilian J. Pet. Gas 2009, 2 (3), 122.
  7. Shahidi, D.; Roy, R.; Azzouz, A. Advances in Catalytic Oxidation of Organic Pollutants − Prospects for Thorough Mineralization by Natural Clay Catalysts. Appl. Catal., B 2015, 174−175, 277. open in new tab
  8. Litter, M. Introduction to Photochemical Advanced Oxidation Processes for Water Treatment. In Environmental Photochemistry Part II; open in new tab
  9. Boule, P., Bahnemann, D. W., Robertson, P. K. J., Eds.; Springer: Berlin, 2005; Vol. 2, pp 325−366. open in new tab
  10. Ameta, R, Kumar, A, Punjabi, P. B., Ameta, S. C. Advanced Oxidation Processes: Basics and Principles. In Wastewater Treatment: Advanced Processes and Technologies; open in new tab
  11. Rao, D. G., Senthilkumar, R., Byrne, J. A., Feroz, S., Eds.; CRC Press and IWA Publishing, 2013; pp 61−107. open in new tab
  12. Oh, S.-Y.; Shin, D.-S. Treatment of Diesel-Contaminated Soil by Fenton and Persulfate Oxidation with Zero-Valent Iron. Soil Sediment Contam. 2014, 23 (2), 180. open in new tab
  13. Zangeneh, H.; Zinatizadeh, a. a L.; Feizy, M. A Comparative Study on the Performance of Different Advanced Oxidation Processes (UV/O3/H2O2) Treating Linear Alkyl Benzene (LAB) Production Plant's Wastewater. J. Ind. Eng. Chem. 2014, 20 (4), 1453. open in new tab
  14. Azbar, N.; Yonar, T.; Kestioglu, K. Comparison of Various Advanced Oxidation Processes and Chemical Treatment Methods for COD and Color Removal from a Polyester and Acetate Fiber Dyeing Effluent. Chemosphere 2004, 55 (1), 35. open in new tab
  15. Boczkaj, G.; Fernandes, A. Wastewater Treatment by Means of Advanced Oxidation Processes at Basic pH Conditions: A Review. Chem. Eng. J. 2017, 320, 608. open in new tab
  16. Kusic, H.; Koprivanac, N.; Bozic, A. L. Minimization of Organic Pollutant Content in Aqueous Solution by Means of AOPs: UV-and Ozone-Based Technologies. Chem. Eng. J. 2006, 123 (3), 127. (15) Esplugas, S.; Gimeńez, J.; Contreras, S.; Pascual, E.; Rodríguez, M. Comparison of Different Advanced Oxidation Processes for Phenol Degradation. Water Res. 2002, 36 (4), 1034. open in new tab
  17. Chandrasekara Pillai, K.; Kwon, T. O.; Moon, I. S. Degradation of Wastewater from Terephthalic Acid Manufacturing Process by Ozonation Catalyzed with Fe2+, H2O2 and UV Light: Direct versus Indirect Ozonation Reactions. Appl. Catal., B 2009, 91 (1−2), 319. open in new tab
  18. Abu Amr, S. S.; Aziz, H. A.; Adlan, M. N. Optimization of Stabilized Leachate Treatment Using Ozone/persulfate in the Advanced Oxidation Process. Waste Manage. 2013, 33 (6), 1434. (18) Meńdez-Arriaga, F.; Otsu, T.; Oyama, T.; Gimenez, J.; Esplugas, S.; Hidaka, H.; Serpone, N. Photooxidation of the Antidepressant Drug Fluoxetine (Prozac®) in Aqueous Media by Hybrid Catalytic/ ozonation Processes. Water Res. 2011, 45 (9), 2782.
  19. Poyatos, J. M.; Munĩo, M. M.; Almecija, M. C.; Torres, J. C.; Hontoria, E.; Osorio, F. Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water, Air, Soil Pollut. 2010, 205 (1−4), 187. open in new tab
  20. Hernandez, R.; Zappi, M.; Colucci, J.; Jones, R. Comparing the Performance of Various Advanced Oxidation Processes for Treatment of Acetone Contaminated Water. J. Hazard. Mater. 2002, 92 (1), 33. (21) Garoma, T.; Gurol, M. D.; Osibodu, O.; Thotakura, L. Treatment of Groundwater Contaminated with Gasoline Components by an ozone/UV Process. Chemosphere 2008, 73 (5), 825.
  21. Katsoyiannis, I. A.; Canonica, S.; von Gunten, U. Efficiency and Energy Requirements for the Transformation of Organic Micro- pollutants by Ozone, O3/H2O2 and UV/H2O2. Water Res. 2011, 45 (13), 3811. open in new tab
  22. Popiel, S.; Nalepa, T.; Dzierzak, D.; Stankiewicz, R.; Witkiewicz, Z. Rate of Dibutylsulfide Decomposition by Ozonation and the O3/ H2O2 Advanced Oxidation Process. J. Hazard. Mater. 2009, 164 (2− 3), 1364. open in new tab
  23. Alaton, I. A.; Balcioglu, I. A.; Bahnemann, D. W. Advanced Oxidation of a Reactive Dyebath Effluent: Comparison of O3, H2O2/ UV-C and TiO2/UV-A Processes. Water Res. 2002, 36 (5), 1143. (25) Coelho, A.; Castro, A. V.; Dezotti, M.; Sant'Anna, G. L. Treatment of Petroleum Refinery Sourwater by Advanced Oxidation Processes. J. Hazard. Mater. 2006, 137 (1), 178. (26) Sharma, J.; Mishra, I. M.; Kumar, V. Degradation and Mineralization of Bisphenol A (BPA) in Aqueous Solution Using Advanced Oxidation Processes: UV/H2O2 and and UV = S2O82- Oxidation Systems. J. Environ. Manage. 2015, 156, 266. open in new tab
  24. Weng, C.-H.; Tao, H. Highly Efficient Persulfate Oxidation Process Activated with Fe0 Aggregate for Decolorization of Reactive Azo Dye Remazol Golden Yellow. Arabian J. Chem. 2015, 0. open in new tab
  25. Spalek, O.; Balej, J.; Paseka, I. Kinetics of the Decomposition of Hydrogen Peroxide in Alkaline Solutions. J. Chem. Soc., Faraday Trans. 1 1982, 78 (8), 2349. open in new tab
  26. Safarzadeh-Amiri, A. O3/H2O2 Treatment of Methyl-Tert- Butyl Ether (MTBE) in Contaminated Waters. Water Res. 2001, 35 (15), 3706. open in new tab
  27. Wu, J. J.; Muruganandham, M.; Chen, S. H. Degradation of DMSO by Ozone-Based Advanced Oxidation Processes. J. Hazard. Mater. 2007, 149 (1), 218. open in new tab
  28. Alsheyab, M. A.; Munõz, A. H. Reducing the Formation of Trihalomethanes (THMs) by Ozone Combined with Hydrogen Peroxide (H2O2/O3). Desalination 2006, 194 (1−3), 121. (32) Water quality  Determination of biochemical oxygen demand after n days (BODn). International Standard ISO 5815-1, 2003. (33) Boczkaj, G.; Makos, P.; Przyjazny, A. Application of Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spec- trometry (DLLME-GC-MS) for the Determination of Oxygenated Volatile Organic Compounds in Effluents from the Production of Petroleum Bitumen. J. Sep. Sci. 2016, 39 (13), 2604. (34) Boczkaj, G.; Makos, P.; Fernandes, A.; Przyjazny, A. New Procedure for the Control of the Treatment of Industrial Effluents to Remove Volatile Organosulfur Compounds. J. Sep. Sci. 2016, 39 (20), 3946.
  29. Boczkaj, G.; Makos, P.; Fernandes, A.; Przyjazny, A. New Procedure for the Examination of the Degradation of Volatile Organonitrogen Compounds during the Treatment of Industrial Effluents. J. Sep. Sci. 2017, 40, 1301. open in new tab
  30. Christensen, H.; Sehested, K.; Corfitzen, H. Reactions of Hydroxyl Radicals with Hydrogen Peroxide at Ambient and Elevated Temperatures. J. Phys. Chem. 1982, 86 (9), 1588. open in new tab
  31. Yang, S.; Wang, P.; Yang, X.; Shan, L.; Zhang, W.; Shao, X.; Niu, R. Degradation Efficiencies of Azo Dye Acid Orange 7 by the Interaction of Heat, UV and Anions with Common Oxidants: Persulfate, Peroxymonosulfate and Hydrogen Peroxide. J. Hazard. Mater. 2010, 179 (1−3), 552. open in new tab
  32. Lucas, M. S.; Peres, J. A.; Li Puma, G. Treatment of Winery Wastewater by Ozone-Based Advanced Oxidation Processes (O3, O3/ UV and O3/UV/H2O2) in a Pilot-Scale Bubble Column Reactor and Process Economics. Sep. Purif. Technol. 2010, 72 (3), 235. (39) Gimeno, O.; Rivas, F. J.; Beltrań, F. J.; Carbajo, M. Photocatalytic Ozonation of Winery Wastewaters. J. Agric. Food Chem. 2007, 55 (24), 9944. open in new tab
  33. Staehelin, J.; Hoigne, J. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ions and Hydrogen Peroxide. Environ. Sci. Technol. 1982, 16 (40), 676. open in new tab
  34. Samudro, G.; Mangkoedihardjo, S. Review on Bod, Cod and Bod/Cod Ratio: A Triangle Zone for Toxic, Biodegradable and Stable Levels. international journal of academic research 2010, 2 (4), 235.
  35. Qureshi, A. A.; Bulich, A. A.; Isenberg, D. L. Microtox ® Toxicity Test Systems: Where They Stand Today. In Microscale Testing in Aquatic Toxicology: Advances, Techniques, and Practice; Wells, P. G., Lee, K., Blaise, C., Eds.; CRC Press: Boca Raton, FL, 1998; p 186. (43) Hawari, A.; Ramadan, H.; Abu-Reesh, I.; Ouederni, M. A Comparative Study of the Treatment of Ethylene Plant Spent Caustic by Neutralization and Classical and Advanced Oxidation. J. Environ. Manage. 2015, 151, 105. (44) Mahamuni, N. N.; Adewuyi, Y. G. Advanced Oxidation Processes (AOPs) Involving Ultrasound for Waste Water Treatment: A Review with Emphasis on Cost Estimation. Ultrason. Sonochem. 2010, 17 (6), 990.
  36. Treatment Technologies for Removal of Methyl Tertiary Butyl Ether (MTBE) from Drinking Water, 2nd ed.; Melin, G., Eds.; NWRI-99-06; open in new tab
Verified by:
Gdańsk University of Technology

seen 200 times

Recommended for you

Meta Tags