Study on the Structure-Property Dependences of Rigid PUR-PIR Foams Obtained from Marine Biomass-Based Biopolyol - Publication - MOST Wiedzy


Study on the Structure-Property Dependences of Rigid PUR-PIR Foams Obtained from Marine Biomass-Based Biopolyol


The paper describes the preparation and characterization of rigid polyurethane-polyisocyanurate (PUR-PIR) foams obtained with biopolyol synthesized in the process of liquefaction of biomass from the Baltic Sea. The obtained foams differed in the content of biopolyol in polyol mixture (0–30 wt%) and the isocyanate index (IISO = 200, 250, and 300). The prepared foams were characterized in terms of processing parameters (processing times, synthesis temperature), physical (sol fraction content, apparent density) and chemical structure (Fourier transform infrared spectroscopy), microstructure (computer microtomography), as well as mechanical (compressive strength, dynamic mechanical analysis), and thermal properties (thermogravimetric analysis, thermal conductivity coefficient). The influence of biopolyol and IISO content on the above properties was determined. The addition of up to 30 wt% of biopolyol increased the reactivity of the polyol mixture, and the obtained foams showed enhanced mechanical, thermal, and insulating properties compared to foams prepared solely with petrochemical polyol. The addition of up to 30 wt% of biopolyol did not significantly affect the chemical structure and average cell size. With the increase in IISO, a slight decrease in processing times and mechanical properties was observed. As expected, foams with higher IISO exhibited a higher relative concentration of polyisocyanurate groups in their chemical structure, which was confirmed using principal component analysis (PCA).


  • 2


  • 0

    Web of Science

  • 1



artykuły w czasopismach
Published in:
Materials no. 13, pages 1 - 22,
ISSN: 1996-1944
Publication year:
Bibliographic description:
Kosmela P., Hejna A., Suchorzewski J., Piszczyk Ł., Haponiuk J.: Study on the Structure-Property Dependences of Rigid PUR-PIR Foams Obtained from Marine Biomass-Based Biopolyol// Materials -Vol. 13,iss. 5 (2020), s.1-22
Digital Object Identifier (open in new tab) 10.3390/ma13051257
Bibliography: test
  1. Plaza, M.; Cifuentes, A.; Ibanez, E. In the search of new functional food ingrediens from algae. Trends Food Sci. Technol. 2008, 19, 31-39. [CrossRef] open in new tab
  2. Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as nutritional and functional food sources: Revisiting our understanding. Environ. Boil. Fishes 2016, 29, 949-982. [CrossRef] [PubMed] open in new tab
  3. Priyadarshani, I.; Rath, B. Commercial and industrial applications of micro algae-A review. J. Algal Biomass Util. 2012, 3, 89-100.
  4. Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.R.; De Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae-A review. Algal Res. 2017, 25, 483-487. [CrossRef] open in new tab
  5. Ishikawa, C.; Tafuku, S.; Kadekaru, T.; Sawada, S.; Tomita, M.; Okudaira, T.; Nakazato, T.; Toda, T.; Uchihara, J.N.; Taira, N.; et al. Anti-adult T-cell leukemia effects of brown algae fucoxanthin and its deacetylated product, fucoxanthinol. Int. J. Cancer 2008, 123, 2702-2712. [CrossRef] open in new tab
  6. Jung, H.A.; Jin, S.E.; Ahn, B.R.; Lee, C.M.; Choi, J.S. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem. Toxicol. 2013, 59, 199-206. [CrossRef] Materials 2020, 13, 1257 open in new tab
  7. Park, M.-K.; Jung, U.; Roh, C. Fucoidan from Marine Brown Algae Inhibits Lipid Accumulation. Mar. Drugs 2011, 9, 1359-1367. [CrossRef] open in new tab
  8. Li, Y.; Lee, S.-H.; Le, Q.-T.; Kim, M.-M.; Kim, S.-K. Anti-allergic Effects of Phlorotannins on Histamine Release via Binding Inhibition between IgE and FcεRI. J. Agric. Food Chem. 2008, 56, 12073-12080. [CrossRef] open in new tab
  9. Mata, T.; Martins, A.; Caetano, N. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217-232. [CrossRef] open in new tab
  10. Rowley, J.A.; Madlambayan, G.; Mooney, D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20, 45-53. [CrossRef] open in new tab
  11. Hassan, M.M.; Mueller, M.; Wagners, M.H. Exploratory study on seaweed as novel filler in polypropylene composite. J. Appl. Polym. Sci. 2008, 109, 1242-1247. [CrossRef] open in new tab
  12. Na Sim, I.; Han, S.O.; Seo, Y.B. Dynamic mechanical and thermal properties of red algae fiber reinforced poly(lactic acid) biocomposites. Macromol. Res. 2010, 18, 489-495. [CrossRef] open in new tab
  13. Luan, L.; Wu, W.; Wagner, M.H. Rheological behavior of lubricating systems in polypropylene/seaweed composites. J. Appl. Polym. Sci. 2011, 121, 2143-2148. [CrossRef] open in new tab
  14. Jang, Y.H.; Han, S.O.; Na Sim, I.; Kim, H.-I. Pretreatment effects of seaweed on the thermal and mechanical properties of seaweed/polypropylene biocomposites. Compos. Part A Appl. Sci. Manuf. 2013, 47, 83-90. [CrossRef] open in new tab
  15. Oh, S.-T.; Kim, W.-R.; Kim, S.-H.; Chung, Y.-C.; Park, J. The preparation of polyurethane foam combined with pH-sensitive alginate/bentonite hydrogel for wound dressings. Fibers Polym. 2011, 12, 159-165. [CrossRef] open in new tab
  16. Yun, J.-K.; Yoo, H.-J.; Kim, H.-D. Preparation and properties of waterborne polyurethane-urea/sodium alginate blends for high water vapor permeable coating materials. J. Appl. Polym. Sci. 2007, 105, 1168-1176. [CrossRef] open in new tab
  17. Yuvarani, I.; Senthilkumar, S.; Venkatesan, J.; Kim, S.-K.; Al-Kheraif, A.A.; Anil, S.; Sudha, P.N. Chitosan Modified Alginate-Polyurethane Scaffold for Skeletal Muscle Tissue Engineering. J. Biomater. Tissue Eng. 2015, 5, 665-672. [CrossRef] open in new tab
  18. Chen, H.-B.; Shen, P.; Chen, M.-J.; Zhao, H.-B.; Schiraldi, D.A. Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating. ACS Appl. Mater. Interfaces 2016, 8, 32557-32564. [CrossRef] open in new tab
  19. Patil, C.K.; Jirimali, H.D.; Paradeshi, J.S.; Chaudhari, B.; Alagi, P.; Hong, S.C.; Gite, V.V. Synthesis of biobased polyols using algae oil for multifunctional polyurethane coatings. Green Mater. 2018, 6, 165-177. [CrossRef] open in new tab
  20. Kadam, A.; Pawar, M.; Thamke, V.; Yemul, O. Polyester amide based polyurethane coatings from algae oil and their larvicidal, anti-ant properties. Prog. Org. Coat. 2017, 107, 43-47. [CrossRef] open in new tab
  21. Petrovic, Z.S.; Wan, X.; Bilić, O.; Zlatanić, A.; Hong, J.; Javni, I.; Ionescu, M.; Milic, J.; DeGruson, D. Polyols and Polyurethanes from Crude Algal Oil. J. Am. Oil Chem. Soc. 2013, 90, 1073-1078. [CrossRef] open in new tab
  22. Pawar, M.S.; Kadam, A.S.; Dawane, B.S.; Yemul, O.S. Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym. Bull. 2015, 73, 727-741. [CrossRef] open in new tab
  23. Kosmela, P.; Gosz, K.; Kazimierski, P.; Hejna, A.; Haponiuk, J.T.; Skarżyński, Ł. Chemical structures, rheological and physical properties of biopolyols prepared via solvothermal liquefaction of Enteromorpha and Zostera marina biomass. Cellulose 2019, 26, 5893-5912. [CrossRef] open in new tab
  24. Hejna, A.; Kosmela, P.; Kirpluks, M.; Cabulis, U.; Klein, M.; Haponiuk, J.; Skarżyński, Ł. Structure, Mechanical, Thermal and Fire Behavior Assessments of Environmentally Friendly Crude Glycerol-Based Rigid Polyisocyanurate Foams. J. Polym. Environ. 2017, 26, 1854-1868. [CrossRef] open in new tab
  25. Hejna, A.; Kirpluks, M.; Kosmela, P.; Cabulis, U.; Haponiuk, J.; Skarżyński, Ł. The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind. Crop. Prod. 2017, 95, 113-125. [CrossRef] open in new tab
  26. Hejna, A.; Haponiuk, J.; Skarżyński, Ł.; Klein, M.; Formela, K. Performance properties of rigid polyurethane-polyisocyanurate/brewers' spent grain foamed composites as function of isocyanate index. e-Polymers 2017, 17, 427-437. [CrossRef] open in new tab
  27. Cellular Plastics and Rubbers. Determination of Apparent (Bulk) Density; PN-EN ISO 845-2000; Polish Committee for Standardization: Warsaw, Poland, 2000. open in new tab
  28. Rigid Cellular Plastics: Determination of Compression Properties; open in new tab
  29. EN ISO 844:2007; ISO International Standards: Geneva, Switzerland, 2007. open in new tab
  30. Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus; open in new tab
  31. ASTM C518; American Society of Testing and Materials C518: Montgomery, PA, USA, 2010. open in new tab
  32. Skarżyński, Ł.; Tejchman, J. Experimental Investigations of Fracture Process in Concrete by Means of X-ray Micro-computed Tomography. Strain 2015, 52, 26-45. [CrossRef] open in new tab
  33. Suchorzewski, J.; Tejchman, J.; Nitka, M. Experimental and numerical investigations of concrete behaviour at meso-level during quasi-static splitting tension. Theor. Appl. Fract. Mech. 2018, 96, 720-739. [CrossRef] open in new tab
  34. Kosmela, P.; Hejna, A.; Formela, K.; Haponiuk, J.; Skarżyński, Ł. The Study on Application of Biopolyols Obtained by Cellulose Biomass Liquefaction Performed with Crude Glycerol for the Synthesis of Rigid Polyurethane Foams. J. Polym. Environ. 2017, 26, 2546-2554. [CrossRef] open in new tab
  35. Bykova, T.A.; Lebedev, B.V.; Kiparisova, E.G.; Tarasov, E.N.; Frenkel, T.M.; Pankratov, V.A.; Vinogradova, S.V.; Korshank, V.V. Thermodynamics of phenyl isocyanate, the process of its cyclotrimerization, and the triphenyl isocyanurate that is formed, in the 0-330 • K interval. Zhurnal Obs. Khimii 1985, 55, 2303-2308. open in new tab
  36. Zhang, X.; Jeremic, D.; Kim, Y.; Street, J.; Shmulsky, R. Effects of Surface Functionalization of Lignin on Synthesis and Properties of Rigid Bio-Based Polyurethanes Foams. Polymers 2018, 10, 706. [CrossRef] open in new tab
  37. Mondal, P.; Khakhar, D. Rigid polyurethane-clay nanocomposite foams: Preparation and properties. J. Appl. Polym. Sci. 2006, 103, 2802-2809. [CrossRef] open in new tab
  38. Fan, H.; Tekeei, A.; Suppes, G.J.; Hsieh, F.-H. Rigid polyurethane foams made from high viscosity soy-polyols. J. Appl. Polym. Sci. 2012, 127, 1623-1629. [CrossRef] open in new tab
  39. Ciecierska, E.; Jurczyk-Kowalska, M.; Bazarnik, P.; Gloc, M.; Kulesza, M.; Kowalski, M.; Krauze, S.; Lewandowska, M. Flammability, mechanical properties and structure of rigid polyurethane foams with different types of carbon reinforcing materials. Compos. Struct. 2016, 140, 67-76. [CrossRef] open in new tab
  40. Szycher, M. Szycher's Handbook of Polyurethanes, 1st ed.; CRC Press: Boca Raton, FL, USA, 1999. open in new tab
  41. Glicksman, L.R. Heat transfer in foams. In Low Density Cellular Plastics; Springer: Berlin/Heidelberg, Germany, 1994; pp. 104-152. open in new tab
  42. Randall, D.; Lee, S. The Polyurethanes Boo;
  43. Kim, S.H.; Kim, B.K.; Lim, H. Effect of isocyanate index on the properties of rigid polyurethane foams blown by HFC 365mfc. Macromol. Res. 2008, 16, 467-472. [CrossRef] open in new tab
  44. Modesti, M.; Lorenzetti, A. An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate-polyurethane foams. Eur. Polym. J. 2001, 37, 949-954. [CrossRef] open in new tab
  45. Kurańska, M.; Barczewski, M.; Uram, K.; Lewandowski, K.; Prociak, A.; Michałowski, S. Basalt waste management in the production of highly effective porous polyurethane composites for thermal insulating applications. Polym. Test. 2019, 76, 90-100. [CrossRef] open in new tab
  46. Barczewski, M.; Kurańska, M.; Sałasińska, K.; Michałowski, S.; Prociak, A.; Uram, K.; Lewandowski, K. Rigid polyurethane foams modified with thermoset polyester-glass fiber composite waste. Polym. Test. 2020, 81. [CrossRef] open in new tab
  47. Guo, H.; Gao, Q.; Ouyang, C.; Zheng, K.; Xu, W. Research on properties of rigid polyurethane foam with heteroaromatic and brominated benzyl polyols. J. Appl. Polym. Sci. 2015, 132. [CrossRef] open in new tab
  48. Shams, A.; Stark, A.; Hoogen, F.; Hegger, J.; Schneider, H. Innovative sandwich structures made of high performance concrete and foamed polyurethane. Compos. Struct. 2015, 121, 271-279. [CrossRef] open in new tab
  49. Javni, I.; Zhang, W.; Petrovic, Z.S. Soybean-Oil-Based Polyisocyanurate Rigid Foams. J. Polym. Environ. 2004, 12, 123-129. [CrossRef] open in new tab
  50. Vale, M.; Mateus, M.M.; Dos Santos, R.G.; De Castro, C.A.N.; De Schrijver, A.; Bordado, J.C.; Marques, A.C. Replacement of petroleum-derived diols by sustainable biopolyols in one component polyurethane foams. J. Clean. Prod. 2019, 212, 1036-1043. [CrossRef] open in new tab
  51. Somani, K.P.; Kansara, S.S.; Patel, N.K.; Rakshit, A.K. Castor oil based polyurethane adhesives for wood-to-wood bonding. Int. J. Adhes. Adhes. 2003, 23, 269-275. [CrossRef] open in new tab
  52. Zhang, L.; Zhang, M.; Zhou, Y.; Hu, L. The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym. Degrad. Stab. 2013, 98, 2784-2794. [CrossRef] open in new tab
  53. Sormana, J.-L.; Meredith, J.C. High-Throughput Discovery of Structure−Mechanical Property Relationships for Segmented Poly(urethane−urea)s. Macromolecules 2004, 37, 2186-2195. [CrossRef] open in new tab
  54. Fournier, D.; Du Prez, F. "Click" Chemistry as a Promising Tool for Side-Chain Functionalization of Polyurethanes. Macromolecules 2008, 41, 4622-4630. [CrossRef] open in new tab
  55. Samborska-Skowron, R.; Balas, A. Jakościowa identyfikacja pierścieni izocyjanurowych w elastomerach uretanowo-izocyjanurowych i w ich hydrolizatach. Polimery 2003, 48, 371-374. [CrossRef] open in new tab
  56. Jiao, L.; Xiao, H.; Wang, Q.; Sun, J. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym. Degrad. Stab. 2013, 98, 2687-2696. [CrossRef] open in new tab
  57. Pretsch, T.; Jakob, I.; Müller, W. Hydrolytic degradation and functional stability of a segmented shape memory poly(ester urethane). Polym. Degrad. Stab. 2009, 94, 61-73. [CrossRef] open in new tab
  58. Romero, R.R.; Grigsby, R.A.; Rister, E.L.; Pratt, J.K.; Ridgway, D. A Study of the Reaction Kinetics of Polyisocyanurate Foam Formulations using Real-time FTIR. J. Cell. Plast. 2005, 41, 339-359. [CrossRef] open in new tab
  59. Xu, Q.; Hong, T.; Zhou, Z.; Gao, J.; Xue, L. The effect of the trimerization catalyst on the thermal stability and the fire performance of the polyisocyanurate-polyurethane foam. Fire Mater. 2017, 42, 119-127. [CrossRef] open in new tab
  60. Yarahmadi, N.; Vega, A.; Jakubowicz, I. Accelerated ageing and degradation characteristics of rigid polyurethane foam. Polym. Degrad. Stab. 2017, 138, 192-200. [CrossRef] open in new tab
  61. © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( open in new tab
Verified by:
Gdańsk University of Technology

seen 16 times

Recommended for you

Meta Tags