Swapping Space for Time: An Alternative to Time-Domain Interferometry - Publication - Bridge of Knowledge

Search

Swapping Space for Time: An Alternative to Time-Domain Interferometry

Abstract

Young's double-slit experiment [1] requires two waves produced simultaneously at two different points in space. In quantum mechanics the waves correspond to a single quantum object, even as complex as a big molecule. An interference is present as long as one cannot tell for sure which slit is chosen by the object. The more we know about the path, the worse the interference. In the paper we show that quantum mechanics allows for a dual version of the phenomenon: self-interference of waves propagating through a single slit but at different moments of time. The effect occurs for time-independent Hamiltonians and thus should not be confused with Moshinsky-type time-domain interference [2], a consequence of active modulation of parameters of the system (oscillating mirrors, chopped beams, time-dependent apertures, moving gratings, etc.). The discussed phenomenon is counterintuitive even for those who are trained in entangled-state quantum interferometry. For example, the more we know about the trajectory in space, the better the interference. Exactly solvable models lead to formulas deceptively similar to those from a Youngian analysis. The models are finite dimensional, with interaction terms based on two-qubit CNOT quantum gates. The effect is generic and should be observable in a large variety of experimental configurations. Moreover, there are reasons to believe that this new type of quantum interference was in fact already observed in atomic interferometry almost three decades ago, but was misinterpreted and thus rejected as an artifact of unknown origin.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 21 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Frontiers in Physics no. 7,
ISSN: 2296-424X
Language:
English
Publication year:
2019
Bibliographic description:
Czachor M.: Swapping Space for Time: An Alternative to Time-Domain Interferometry// Frontiers in Physics -Vol. 7, (2019), s.79-
DOI:
Digital Object Identifier (open in new tab) 10.3389/fphy.2019.00079
Bibliography: test
  1. Young T. The bakerian lecture. Experiments and calculations relative to physical optics. Phil Trans R Soc Lond. (1804) 94:1-16. doi: 10.1098/rstl.1804.0001 open in new tab
  2. Moshinsky M. Diffraction in time. Phys Rev. (1952) 88:625-631. doi: 10.1103/PhysRev.88.625 open in new tab
  3. Badurek G, Rauch H, Tuppinger D. Neutron interferometric double-resonance experiment. Phys Rev A. (1986) 34:2600-8. doi: 10.1103/PhysRevA.34.2600 open in new tab
  4. Hils Th., Felber J, Gähler R, Gläser W, Golub R, Habicht K, et al. Matter-wave optics in the time domain: Results of a cold-neutron experiment. Phys Rev A. (1998) 58:4784-90. doi: 10.1103/PhysRevA.58.4784 open in new tab
  5. Balashov SN, Bondarenko IV, Frank AI, Geltenbort P, Høghøj P, Kulin GV, et al. Diffraction of ultracold neutrons on a moving grating and neutron focusing in time. Physica B. (2004) 350:246-9. doi: 10.1016/j.physb.2004.04.038 open in new tab
  6. Arndt M, Szriftgiser P, Dalibard J, Steane AM. Atom optics in the time domain. Phys Rev A. (1996) 53:3369-78. doi: 10.1103/PhysRevA.5 3.3369 open in new tab
  7. Szriftgiser P, Guéry-Odelin D, Arndt M, Dalibard J. Atomic diffraction and interference using temporal slits. Phys Rev Lett. (1996) 77:4-7. doi: 10.1103/PhysRevLett.77.4 open in new tab
  8. Lindner F, Schaetzel MG, Walther H, Baltuska A, Goulielmakis E, Krausz F, et al. Attosecond double-slit experiment. Phys Rev Lett. (2005) 95:040401. doi: 10.1103/PhysRevLett.95.040401 open in new tab
  9. BrucknerČ, Zeilinger A. Diffraction of matter waves in space and in time. Phys Rev A. (1997) 56:3804-2824. doi: 10.1103/PhysRevA.56.3804 open in new tab
  10. Paulus GG, Bauer D. Double-slit in the time domain. Lect Notes Phys. (2009) 789:303-39. doi: 10.1007/978-3-642-0317 open in new tab
  11. Miniatura ch., Perales F, Vassilev G, Reinhardt J, Robert J, Baudon J. A longitudinal Stern-Gerlach interferometer: the 'beaded' atom. J Physique II. (1991) 1:425-36. doi: 10.1051/jp2:1991177 open in new tab
  12. Robert J, Ch. Miniatura, Gorceix O, Le Boiteux S, Lorent V, Reinhardt J, et al. Atomic quantum phase studies with a longitudinal Stern-Gerlach interferometer. J Physique II. (1992) 2:601-4. doi: 10.1051/jp2:1992155 open in new tab
  13. Wootters WK, Zurek WH. Complementarity in the double-slit experiment: quantum nonseparability and a quantitative statement of Bohr's principle. Phys Rev D. (1979) 19:473-84. doi: 10.1103/PhysRevD.1 9.473 open in new tab
  14. Chapman MS, Hammond TD, Lenef A, Schmiedmayer J, Rubenstein RA, Smith E., et al. Photon scattering from atoms in an atom interferometer: coherence lost and regained. Phys Rev Lett. (1995) 75:3783-7. doi: 10.1103/PhysRevLett.75.3783 open in new tab
  15. Englert B-G. Fringe visibility and which-way information: an inequality. Phys Rev Lett. (1996) 77:2154. doi: 10.1103/PhysRevLett.7 7.2154 open in new tab
  16. Rzażewski K,Żakowicz W. Spontaneous emission from an extended wavepacket. J Phys B. (1992) 25:L319-22. doi: 10.1088/0953-4075/25/13/001 open in new tab
  17. Steuernagel O, Paul H. Spontaneous emission from an extended wave packet: field correlations. Phys Rev A. (1996) 53:2983-5. doi: 10.1103/PhysRevA.53.2983 open in new tab
  18. Chan KW, Law CK, Eberly JH. Quantum entanglement in photon-atom scattering. Phys Rev A. (2003) 68:022110. doi: 10.1103/PhysRevA.68.022110 open in new tab
  19. Fedorov MV, Efremov MA, Kazakov AE, Chan KW, Law CK, Eberly JH. Spontaneous emission of a photon: wave-packet structures and atom-photon entanglement. Phys Rev A. (2005) 72:032110. doi: 10.1103/PhysRevA.72.032110 open in new tab
  20. Guo R, Guo H. Momentum entanglement and disentanglement between an atom and a photon. Phys Rev A. (2007) 76:012112. doi: 10.1103/PhysRevA.76.012112 open in new tab
  21. de Melo e Souza R, Impens F, Maia Neto PA. Decoherence by spontaneous emission: a single-atom analog of superradiance. Phys Rev A. (2016) 94:062114. doi: 10.1103/PhysRevA.94.062114 open in new tab
  22. Cronin D, Schmiedmayer J, Pritchard DE. Optics and interferometry with atoms and molecules. Rev Mod Phys. (2009) 81:1051-129. doi: 10.1103/RevModPhys.81.1051 open in new tab
  23. Czachor M, You L. Nonsimultaneous spontaneous emission from atomic wave packets. In: Eberly JH, Mandel L, Wolf E, editors. it Coherence and Quantum Optics VII. New York, NY: Plenum Press (1996). p. 719-20. open in new tab
  24. Gyulassy M, Kauffmann S.K, Wilson LW. Pion interferometry of nuclear collisions. Theory I. Phys Rev C. (1979) 20:2267-92. doi: 10.1103/PhysRevC.20.2267 open in new tab
  25. Florkowski W. Phenomenology of Ultra-Relativistic Heavy-Ion Collisions. Singapore: World Scientific (2010). doi: 10.1142/7396 open in new tab
  26. Marzlin K-P, Sanders BC, Knight PL. Complementarity and uncertainty relations for matter-wave interferometry. Phys Rev A. (2009) 78:062107. doi: 10.1103/PhysRevA.78.062107 open in new tab
  27. Pfau T, Spälter S, Kurtsiefer C, Ekstrom CR, Mlynek J. Loss of spatial coherence by a single spontaneous emission. Phys Rev Lett. (1994) 73:1223-6. doi: 10.1103/PhysRevLett.73.1223 open in new tab
  28. Kurtsiefer C, Dross O, Voigt D, Ekstrom CR, Pfau T, Mlynek J. Observation of correlated atom-photon pairs on the single-particle level. Phys Rev A. (1997) 55:R2539-42. doi: 10.1103/PhysRevA.55.R2539 open in new tab
  29. Dopfer B, Kwiat PG, Weinfurter H, Zeilinger A, Horne MA. Brillouin scattering and dynamical diffraction of entangled photon pairs. Phys Rev A. (1995) 52:R2531-4. doi: 10.1103/PhysRevA.52.R2531 open in new tab
  30. Czachor M, You L. Spatially sequential turn-on of spontaneous emission from an atomic wave packet. Int. J. Theor. Phys. (1999) 38:277-88. doi: 10.1023/A:1026653712169 open in new tab
Verified by:
Gdańsk University of Technology

seen 122 times

Recommended for you

Meta Tags