Synthesis, Chemical Characterization and Multiscale Biological Evaluation of a dimericcRGD Peptide for Targeted Imaging of αVβ3 Integrin Activity - Publication - Bridge of Knowledge

Search

Synthesis, Chemical Characterization and Multiscale Biological Evaluation of a dimericcRGD Peptide for Targeted Imaging of αVβ3 Integrin Activity

Abstract

Cyclic peptides containing the Arg-Gly-Asp (RGD) sequence have been shown to specifically bind the angiogenesis biomarker α V β3 integrin. We report the synthesis, chemical characterization, and biological evaluation of two novel dimeric cyclic RGD-based molecular probes for the targeted imaging of α V β3 activity (a radiolabeled version, 64Cu-NOTA-PEG4-cRGD2, for PET imaging, and a fluorescent version, FITC-PEG4-cRGD2, for in vitro work). We investigated the performance of this probe at the receptor, cell, organ, and whole-body levels, including its use to detect diabetes associated impairment of ischemia-induced myocardial angiogenesis. Both versions of the probe were found to be stable, demonstrated fast receptor association constants, and showed high specificity for α V β3 in HUVECs (K d  ~ 35 nM). Dynamic PET-CT imaging indicated rapid blood clearance via kidney filtration, and accumulation within α V β3-positive infarcted myocardium. 64Cu-NOTA-PEG4-cRGD2 demonstrated a favorable biodistribution, slow washout, and excellent performance with respect to the quality of the PET-CT images obtained. Importantly, the ratio of probe uptake in infarcted heart tissue compared to normal tissue was significantly higher in non-diabetic rats than in diabetic ones. Overall, our probes are promising agents for non-invasive quantitative imaging of α V β3 expression, both in vitro and in vivo.

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 9

    Scopus

Authors (14)

  • Photo of  Jamila Hedhli

    Jamila Hedhli

    • Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
  • Photo of  Andrzej Czerwiński

    Andrzej Czerwiński

    • Peptides International Inc., Louisville, KY, USA
  • Photo of  Matthew Schuelke

    Matthew Schuelke

    • Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
  • Photo of  Agata Płoska

    Agata Płoska

    • Medical University of Gdansk Department of Laboratory Diagnostics
  • Photo of  Lukas La Hood

    Lukas La Hood

    • University of Illinois at Urbana-Champaign, Urbana, IL, USA Department of Bioengineering
  • Photo of  Spencer B. Mamer

    Spencer B. Mamer

    • University of Illinois at Urbana-Champaign, Urbana, IL, USA Department of Bioengineering
  • Photo of  John A. Cole

    John A. Cole

    • University of Illinois at Urbana-Champaign Department of Physics
  • Photo of  Paulina Czaplewska

    Paulina Czaplewska

    • Intercollegiate Faculty of Biotechnology of the University of Gdansk and Medical University of Gdansk
  • Photo of  Maciej Banach

    Maciej Banach

    • Medical University of Lodz Department of Hypertension
  • Photo of  Iwona T. Dobrucki

    Iwona T. Dobrucki

    • Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
  • Photo of  Leszek Kalinowski

    Leszek Kalinowski

    • Medical University of Gdansk, Gdansk, Department of Laboratory Diagnostics
  • Photo of  Princess Imoukhuede

    Princess Imoukhuede

    • University of Illinois at Urbana-Champaign, Urbana, IL, USA Department of Bioengineering
  • Photo of  Lawrence W. Dobrucki

    Lawrence W. Dobrucki

    • Beckman Institute for Advanced Science and Technology, Urbana, IL, USA

Cite as

Full text

download paper
downloaded 93 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Scientific Reports no. 7, pages 1 - 15,
ISSN: 2045-2322
Language:
English
Publication year:
2017
Bibliographic description:
Hedhli J., Czerwiński A., Schuelke M., Płoska A., Sowiński P., La Hood L., Mamer S., Cole J., Czaplewska P., Banach M., Dobrucki I., Kalinowski L., Imoukhuede P., Dobrucki L.: Synthesis, Chemical Characterization and Multiscale Biological Evaluation of a dimericcRGD Peptide for Targeted Imaging of αVβ3 Integrin Activity// Scientific Reports. -Vol. 7, (2017), s.1-15
DOI:
Digital Object Identifier (open in new tab) 10.1038/s41598-017-03224-8
Bibliography: test
  1. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27-30, doi:10.1038/nm0195-27 (1995). open in new tab
  2. Dobrucki, L. W., de Muinck, E. D., Lindner, J. R. & Sinusas, A. J. Approaches to multimodality imaging of angiogenesis. J Nucl Med 51(Suppl 1), 66S-79S, doi:10.2967/jnumed.109.074963 (2010). open in new tab
  3. Otrock, Z. K., Mahfouz, R. A., Makarem, J. A. & Shamseddine, A. I. Understanding the biology of angiogenesis: review of the most important molecular mechanisms. Blood Cells Mol Dis 39, 212-20, doi:10.1016/j.bcmd.2007.04.001 (2007). open in new tab
  4. Yamada, M. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol 9, 76-85, doi:10.1016/S0955-0674(97)80155-X (1997). open in new tab
  5. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11, 288-300, doi:10.1038/nrm2871 (2010). open in new tab
  6. Xiong, J.-P. et al. Crystal structure of the extracellular segment of integrin αvβ3. Science 294, 339-345, doi:10.1126/science.1064535 (2001). open in new tab
  7. Niu, G. & Chen, X. Why integrin as a primary target for imaging and therapy. Theranostics 1, 30-47, doi:10.7150/thno/v01p0030 (2011). open in new tab
  8. Goswami, S. Importance of integrin receptors in the field of pharmaceutical & medical science. Adv Biol Chem 3, 224-252, doi:10.4236/abc.2013.32028 (2013). open in new tab
  9. Cai, W., Niu, G. & Chen, X. Imaging of integrins as biomarkers for tumor angiogenesis. Curr Pharm Des 14, 2943-73, doi:10.2174/138161208786404308 (2008). open in new tab
  10. Zhang, Y., Yang, Y. & Cai, W. Multimodality imaging of integrin α V β 3 expression. Theranostics 1, 135-148, doi:10.7150/thno/ v01p0135 (2011). open in new tab
  11. Iagaru, A. & Gambhir, S. S. Imaging tumor angiogenesis: the road to clinical utility. AJR Am J Roentgenol 201, W183-91, doi:10.2214/ AJR.12.8568 (2013). open in new tab
  12. Liu, Y., Yang, Y. & Zhang, C. A concise review of magnetic resonance molecular imaging of tumor angiogenesis by targeting integrin alphavbeta3 with magnetic probes. Int J Nanomedicine 8, 1083-1093, doi:10.2147/IJN.S39880 (2013). open in new tab
  13. Haubner, R. & Decristoforo, C. Radiolabelled rgd peptides and peptidomimetics for tumour targeting. Front Biosci (Landmark Ed) 14, 872-86, doi:10.2741/3283 (2009). open in new tab
  14. Schottelius, M., Laufer, B., Kessler, H. & Wester, H. J. Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 42, 969-80, doi:10.1021/ar800243b (2009). open in new tab
  15. Liu, S. Radiolabeled cyclic rgd peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20, 2199-213, doi:10.1021/bc900167c (2009). open in new tab
  16. Zhou, Y., Chakraborty, S. & Liu, S. Radiolabeled cyclic rgd peptides as radiotracers for imaging tumors and thrombosis by spect. Theranostics 1, 58-82, doi:10.7150/thno/v01p0058 (2011). open in new tab
  17. Danhier, F., Le Breton, A. & Preat, V. Rgd-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9, 2961-73, doi:10.1021/mp3002733 (2012). open in new tab
  18. Tateishi, U., Oka, T. & Inoue, T. Radiolabeled rgd peptides as integrin alpha(v)beta3-targeted pet tracers. Curr Med Chem 19, 3301-9, doi:10.2174/092986712801215937 (2012). open in new tab
  19. Cai, H. & Conti, P. S. Rgd-based pet tracers for imaging receptor integrin alphav beta3 expression. J Labelled Comp Radiopharm 56, 264-79, doi:10.1002/jlcr.2999 (2013). open in new tab
  20. Haubner, R., Maschauer, S. & Prante, O. Pet radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. Biomed Res Int 2014, 871609, doi:10.1155/2014/871609 (2014). open in new tab
  21. Gaertner, F. C., Kessler, H., Wester, H. J., Schwaiger, M. & Beer, A. J. Radiolabelled rgd peptides for imaging and therapy. Eur J Nucl Med Mol Imaging 39(Suppl 1), S126-38, doi:10.1007/s00259-011-2028-1 (2012). open in new tab
  22. Beer, A. J., Kessler, H., Wester, H. J. & Schwaiger, M. PET Imaging of Integrin α V β 3 Expression. Theranostics 1, 48-57, doi:10.1007/ s10555-008-9158-3 (2011). open in new tab
  23. Liu, S. Radiolabeled cyclic rgd peptide bioconjugates as radiotracers targeting multiple integrins. Bioconjug Chem 26, 1413-38, doi:10.1021/acs.bioconjchem.5b00327 (2015). open in new tab
  24. Gao, H. et al. Pet imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18f-alf-nota-prgd2. Eur J Nucl Med Mol Imaging 39, 683-92, doi:10.1007/s00259-011-2052-1 (2012). open in new tab
  25. Eo, J. S. et al. Angiogenesis imaging in myocardial infarction using 68ga-nota-rgd pet: characterization and application to therapeutic efficacy monitoring in rats. Coron Artery Dis 24, 303-11, doi:10.1097/MCA.0b013e3283608c32 (2013). open in new tab
  26. Kiugel, M. et al. Dimeric [(68)ga]dota-rgd peptide targeting alphavbeta 3 integrin reveals extracellular matrix alterations after myocardial infarction. Mol Imaging Biol 16, 793-801, doi:10.1007/s11307-014-0752-1 (2014). open in new tab
  27. Reyes, E. A novel pet tracer for targeted imaging of atherosclerosis. J Nucl Cardiol 22, 1191-4, doi:10.1007/s12350-015-0088-5 (2015). open in new tab
  28. Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angewandte Chemie 37, 2754-2794, doi:10.1002/(sici)1521-3773(19981102)37:20<2754::aid- anie2754>3.0.co;2-3 (1998). open in new tab
  29. Chen, X. et al. Micropet imaging of breast cancer alphav-integrin expression with 64cu-labeled dimeric rgd peptides. Mol Imaging Biol 6, 350-9, doi:10.1016/j.mibio.2004.06.004 (2004). open in new tab
  30. Chen, X. et al. Micro-pet imaging of alphav-beta3-integrin expression with 18f-labeled dimeric rgd peptide. Mol Imaging 3, 96-104, doi:10.1162/1535350041464892 (2004). open in new tab
  31. Li, Z. B. et al. (64)cu-labeled tetrameric and octameric rgd peptides for small-animal pet of tumor alpha(v)beta(3) integrin expression. J Nucl Med 48, 1162-71, doi:10.2967/jnumed.107.039859 (2007). open in new tab
  32. Li, Z. B., Chen, K. & Chen, X. (68)ga-labeled multimeric rgd peptides for micropet imaging of integrin alpha(v)beta (3) expression. Eur J Nucl Med Mol Imaging 35, 1100-8, doi:10.1007/s00259-007-0692-y (2008). open in new tab
  33. Liu, S. et al. Evaluation of a (99 m)tc-labeled cyclic rgd tetramer for noninvasive imaging integrin alpha(v)beta3-positive breast cancer. Bioconjug Chem 18, 438-46, doi:10.1021/bc0603081 (2007). open in new tab
  34. Wang, L. et al. Improving tumor-targeting capability and pharmacokinetics of (99 m)tc-labeled cyclic rgd dimers with peg(4) linkers. Mol Pharm 6, 231-45, doi:10.1021/mp800150r (2009). open in new tab
  35. Scientific RepoRts | 7: 3185 | DOI:10.1038/s41598-017-03224-8 open in new tab
  36. Shi, J. et al. Improving tumor uptake and pharmacokinetics of (64)cu-labeled cyclic rgd peptide dimers with gly(3) and peg(4) linkers. Bioconjug Chem 20, 750-9, doi:10.1021/bc800455p (2009). open in new tab
  37. Kubas, H. et al. Multivalent cyclic rgd ligands: influence of linker lengths on receptor binding. Nucl Med Biol 37, 885-91, doi:10.1016/j.nucmedbio.2010.06.005 (2010). open in new tab
  38. Shi, J. et al. Evaluation of in-labeled cyclic rgd peptides: Effects of peptide and linker multiplicity on their tumor uptake, excretion kinetics and metabolic stability. Theranostics 1, 322-40, doi:10.7150/thno/v01p0322 (2011). open in new tab
  39. Ji, S. et al. (99 m)tc-galacto-rgd2: a novel 99mtc-labeled cyclic rgd peptide dimer useful for tumor imaging. Mol Pharm 10, 3304-14, doi:10.1021/mp400085d (2013). open in new tab
  40. Goodman, S. L. & Picard, M. Integrins as therapeutic targets. Trends Pharmacol Sci 33, 405-12, doi:10.1016/j.tips.2012.04.002 (2012). open in new tab
  41. Ma, Q. et al. Differential diagnosis of solitary pulmonary nodules using (9)(9)mtc-3p(4)-rgd(2) scintigraphy. Eur J Nucl Med Mol Imaging 38, 2145-52, doi:10.1007/s00259-011-1901-2 (2011). open in new tab
  42. 99m tc-3prgd 2 for integrin receptor imaging of lung cancer: a multicenter study. J Nucl Med 53, 716-722, doi:10.2967/ jnumed.111.098988 (2012). open in new tab
  43. Miao, W. et al. Comparison of 99mtc-3prgd2 integrin receptor imaging with 99mtc-mdp bone scan in diagnosis of bone metastasis in patients with lung cancer: a multicenter study. PLoS One 9, e111221, doi:10.1371/journal.pone.0111221 (2014). open in new tab
  44. Liu, L. et al. (99)mtc-3prgd2 scintimammography in palpable and nonpalpable breast lesions. Mol Imaging 13, doi:10.2310/7290.2014.00010 (2014). open in new tab
  45. Mittra, E. S. et al. Pilot pharmacokinetic and dosimetric studies of (18)f-fpprgd2: a pet radiopharmaceutical agent for imaging alpha (v) beta (3) integrin levels. Radiology 260, 182-91, doi:10.1148/radiol.11101139 (2011). open in new tab
  46. Iagaru, A. et al. (18)f-fpprgd2 pet/ct: pilot phase evaluation of breast cancer patients. Radiology 273, 549-59, doi:10.1148/ radiol.14140028 (2014). open in new tab
  47. Minamimoto, R. et al. Biodistribution of the (1) (8) f-fpprgd (2) pet radiopharmaceutical in cancer patients: an atlas of suv measurements. Eur J Nucl Med Mol Imaging 42, 1850-8, doi:10.1007/s00259-015-3096-4 (2015). open in new tab
  48. Iagaru, A. et al. Glioblastoma multiforme recurrence: An exploratory study of (18)f fpprgd2 pet/ct. Radiology 277, 497-506, doi:10.1148/radiol.2015141550 (2015). open in new tab
  49. Withofs, N. et al. 18f-fprgd2 pet/ct imaging of integrin alphavbeta3 in renal carcinomas: correlation with histopathology. J Nucl Med 56, 361-4, doi:10.2967/jnumed.114.149021 (2015). open in new tab
  50. Walsh, J. C. & Kolb, H. C. Applications of click chemistry in radiopharmaceutical development. Chimia (Aarau) 64, 29-33, doi:10.2533/chimia.2010.29 (2010). open in new tab
  51. Chen, K. et al. Synthesis and evaluation of 64cu-labeled monomeric and dimeric ngr peptides for micropet imaging of cd13 receptor expression. Mol Pharm 10, 417-27, doi:10.1021/mp3005676 (2013). open in new tab
  52. Bentz, J. et al. Variability in p-glycoprotein inhibitory potency (ic(5)(0)) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria. Drug Metab Dispos 41, 1347-66, doi:10.1124/ dmd.112.050500 (2013). open in new tab
  53. Urbinati, C. et al. alpha(v)beta3-integrin-dependent activation of focal adhesion kinase mediates nf-kappab activation and motogenic activity by hiv-1 tat in endothelial cells. J Cell Sci 118, 3949-58, doi:10.1242/jcs.02518 (2005). open in new tab
  54. Haubner, R. et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18f-labeled rgd-containing glycopeptide and positron emission tomography. Cancer Res 61, 1781-5, doi:Published March 2001 (2001).
  55. Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside- in and inside-out signaling. Cell 110, 599-11, doi:S0092867402009352 [pii] (2002). open in new tab
  56. Higuchi, T. et al. Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res 78, 395-403, doi:10.1093/cvr/cvn033 (2008). open in new tab
  57. Meoli, D. F. et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest 113, 1684-91, doi:10.1172/JCI20352 (2004). open in new tab
  58. Hua, J. et al. Noninvasive imaging of angiogenesis with a 99mtc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia. Circulation 111, 3255-60, doi:10.1161/CIRCULATIONAHA.104.485029 (2005). open in new tab
  59. Dimastromatteo, J. et al. In vivo molecular imaging of myocardial angiogenesis using the alpha(v)beta3 integrin-targeted tracer 99mtc-raft-rgd. J Nucl Cardiol 17, 435-43, doi:10.1007/s12350-010-9191-9 (2010). open in new tab
  60. Laitinen, I. et al. Comparison of cyclic rgd peptides for alphavbeta3 integrin detection in a rat model of myocardial infarction. EJNMMI Res 3, 38, doi:10.1186/2191-219X-3-38 (2013). open in new tab
  61. Haubner, R. et al. [18f]galacto-rgd: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. Bioconjug Chem 15, 61-9, doi:10.1021/bc034170n (2004). open in new tab
  62. Garrison, J. C. et al. In vivo evaluation and small-animal pet/ct of a prostate cancer mouse model using 64cu bombesin analogs: side-by-side comparison of the cb-te2a and dota chelation systems. J Nucl Med 48, 1327-37, doi:10.2967/jnumed.107.039487 (2007). open in new tab
  63. Dobrucki, L. W. et al. Analysis of angiogenesis induced by local igf-1 expression after myocardial infarction using microspect-ct imaging. J Mol Cell Cardiol 48, 1071-9, doi:10.1016/j.yjmcc.2009.10.008 (2010). open in new tab
  64. Biacore, A. BIAevaluation Software Handbook 4 (1997). open in new tab
  65. Karlsson, R. Affinity analysis of non-steady-state data obtained under mass transport limited conditions using biacore technology. J Mol Recognit 12, 285-92, doi:10.1002/(SICI)1099-1352(199909/10)12:5<285::AID-JMR469>3.0.CO;2-Y (1999). open in new tab
  66. Murphy, M., Jason-Moller, L. & Bruno, J. Using biacore to measure the binding kinetics of an antibody-antigen interaction. Curr Protoc Protein Sci Chapter 19, Unit 19 14, doi:10.1002/0471142301.ps1914s45 (2006). open in new tab
  67. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676-82, doi:10.1038/nmeth.2019 (2012). open in new tab
Verified by:
Gdańsk University of Technology

seen 75 times

Recommended for you

Meta Tags