Synthetic, Structural, and Spectroscopic Characterization of a Novel Family of High-Spin Iron(II) [(β-Diketiminate)(phosphanylphosphido)] Complexes - Publication - Bridge of Knowledge

Search

Synthetic, Structural, and Spectroscopic Characterization of a Novel Family of High-Spin Iron(II) [(β-Diketiminate)(phosphanylphosphido)] Complexes

Abstract

This work describes a series of iron(II) phosphanylphosphido complexes. These compounds were obtained by reacting lithiated diphosphanes R2PP(SiMe3)Li (R = t-Bu, i-Pr) with an iron(II) β-diketiminate complex, [LFe(μ2-Cl)2Li(DME)2] (1), where DME = 1,2-dimethoxyethane and L = Dippnacnac (β-diketiminate). While the reaction of 1 with t-Bu2PP(SiMe3)Li yields [LFe(η1-Me3SiPPt- Bu2)] (2), that of 1 with equimolar amounts of i-Pr2PP(SiMe3)Li, in DME, leads to [LFe(η2-i-Pr2PPSiMe3)](3). In contrast, the reaction of 1 with (i-Pr2N)2PP(SiMe3)Li provides not an iron-containing complex but 1-[(diisopropylamino)phosphine]-2,4-bis(diisopropylamino)-3-(trimethylsilyl)tetraphosphetane (4). The structures of 2−4 were determined using diffractometry. Thus, 2 exhibits a three-coordinate iron site and 3 a four-coordinate iron site. The increase in the coordination number is induced by the change from an anticlinal to a synclinal conformation of the phoshpanylphosphido ligands. The electronic structures of 2 and 3 were assessed through a combined field-dependent 57Fe Mössbauer and highfrequency and -field electron paramagnetic resonance spectroscopic investigation in conjunction with analysis of their magnetic susceptibility and magnetization data. These studies revealed two high-spin iron(II) sites with S = 2 ground states that have different properties. While 2 exhibits a zero-field splitting described by a positive D parameter (D = +17.4 cm−1; E/D = 0.11) for 3, this parameter is negative [D = −25(5) cm−1; E/D = 0.15(5)]. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations provide insights into the origin of these differences and allow us to rationalize the fine and hyperfine structure parameters of 2 and 3. Thus, for 2, the spin−orbit coupling mixes a z2-type ground state with two low-lying {xz/yz} orbital states. These interactions lead to an easy plane of magnetization, which is essentially parallel to the plane defined by the N−Fe−N atoms. For 3, we find a yz-type ground state that is strongly mixed with a low-lying z2-type orbital state. In this case, the spin−orbit interaction leads to a partial unquenching of the orbital momentum along the x axis, that is, to an easy axis of magnetization oriented roughly along the Fe−P bond of the phosphido moiety.

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 3

    Scopus

Cite as

Full text

download paper
downloaded 51 times
Publication version
Accepted or Published Version
License
Copyright (2017 American Chemical Society)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
INORGANIC CHEMISTRY no. 56, pages 11030 - 11042,
ISSN: 0020-1669
Language:
English
Publication year:
2017
Bibliographic description:
Grubba R., Kaniewska K., Ponikiewski Ł., Cristóvão B., Ferenc W., Dragulescu-Andrasi A., Krzystek J., Stoian S., Pikies J.: Synthetic, Structural, and Spectroscopic Characterization of a Novel Family of High-Spin Iron(II) [(β-Diketiminate)(phosphanylphosphido)] Complexes// INORGANIC CHEMISTRY. -Vol. 56, iss. 18 (2017), s.11030-11042
DOI:
Digital Object Identifier (open in new tab) 10.1021/acs.inorgchem.7b01374
Verified by:
Gdańsk University of Technology

seen 222 times

Recommended for you

Meta Tags