The chemistry of river–lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part I. Analysis of ion and trace metal concentrations - Publication - Bridge of Knowledge

Search

The chemistry of river–lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part I. Analysis of ion and trace metal concentrations

Abstract

This study provides a description of water chemistry in river–lake systems located in central Mongolia, at the borderline of permafrost occurrence. The analysis involved water samples collected from two river–lake systems: Baydrag River–Böön Tsagaan Lake system, and Shargalyuut/Tuyn Rivers–Orog Lake system. In the water samples, ions and trace elements were detected and quantified. Additionally, the parameters of pH, electrical conductivity (SEC), total dissolved solids (TDS) and total organic carbon (TOC) were determined. Principal Component Analysis (PCA) was performed on the sample results. Water chemistry is mostly influenced by geochemical and hydrometeorological processes. Permafrost thawing could increase the concentration of nitrogen (NH4+, NO3−) as well as Na+ and Ca2+, Cl− and SO42−. However, it may also be an effect of other factors such as livestock farming. Seasonal drying out of lakes (e.g., Lake Orog) may also influence water chemistry by deflation of evaporites from exposed lake beds and, at the same time, with lower concentration of chemical compounds in water. The PCA shows that water samples can be divided into two groups. The first group contains lake samples, where water chemistry is shaped by prevailing evaporation processes, whereas the second includes samples from rivers and springs. Water chemistry of the latter is predominantly influenced by geochemical and hydrometeorological processes

Citations

  • 2 0

    CrossRef

  • 0

    Web of Science

  • 1 7

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 129 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SEDIMENTARY GEOLOGY no. 340, pages 74 - 83,
ISSN: 0037-0738
Publication year:
2016
Bibliographic description:
Szopińska M., Szumińska D., Polkowska Ż., Machowiak K., Lehmann-Konera S., Chmiel S.: The chemistry of river–lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes). Part I. Analysis of ion and trace metal concentrations// SEDIMENTARY GEOLOGY. -Vol. 340, (2016), s.74-83
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.sedgeo.2016.03.004
Bibliography: test
  1. Abbott, B.W., Jones, J.B., Godsey, S.E., Larouche, J.R., Bowden, W.B., 2015. Patterns and per- sistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeoscience 12, 3725-3740. open in new tab
  2. Bagard, M.-L., Chabaux, F., Pokrovsky, O.S., Viers, J., Prokushkin, A.S., Stille, P., Rihs, S., Schmitt, A.-D., Dupré, B., 2011. Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochimica et Cosmochimica Acta 75, 3335-3357. open in new tab
  3. Batimaa, P., Batnasan, N., Bolormaa, B., 2008. Climate change and water resources in Mongolia. In: Basandorj, D., Oyunbaatar, D. (Eds.), Uncertainties In Water Resource Management: Causes, Technologies and Consequences (WRM-MON2008), Conference Proceedings. Ulaanbaatar, Mongolia, pp. 7-12.
  4. Batsukh, N., Dorjsuren, D., Batsaikhan, G., 2008. The Water Resources, Use and Conserva- tion in Mongolia (First National Report). National Water Committee, Ministry of Nature and Environment, Government of the Netherlands, Ulaanbaatar.
  5. Bayasgalan, B., Mijiddorj, R., Gomboluudev, P., Oyunbaatar, D., Bayasgalan, M., Tas, A., Narantuya, T., Molomjamts, L., 2009. Climate change and sustainable livelihood of rural people in Mongolia. In: Devisscher, T., O'Brien, G., O'Keefe, P., Tellam, I. (Eds.), The Adaptation Continuum. Groundwork for the Future. ETC Foundation, Leusden, The Netherlands, pp. 193-215.
  6. Bignall, G., Batkhishig, B., Tsuchiya, N., 2003. Taking the Waters?: Shargaljuut Hot Springs (Mongolia). Proceedings 25th Geothermal Workshop. pp. 15-20.
  7. Carey, S.K., 2003. Dissolved organic carbon fluxes in a discontinuous permafrost sub- arctic alpine catchment. Permafrost and Periglacial Processes 14, 161-171. open in new tab
  8. Chalov, S.R., Zavadsky, A.S., Belozerova, E.V., Bulacheva, M.P., Jarsjö, J., Thorslund, J., Yamkhin, J., 2012. Suspended and dissolved matter fluxes in the upper Selenga river basin. Geography Environment Sustainability 5, 78-94. open in new tab
  9. Cheng, G., Jin, H., 2012. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeology Journal 21, 5-23. open in new tab
  10. Christiansen, H.H., Etzelmüller, B., Isaksen, K., Juliussen, H., Farbrot, H., Humlum, O., Johansson, M., Ingeman-Nielsen, T., Kristensen, L., Hjort, J., Holmlund, P., Sannel, A.B.K., Sigsgaard, C., Åkerman, H.J., Foged, N., Blikra, L.H., Pernosky, M.A., Ødegård, R.S., 2010. The thermal state of permafrost in the Nordic area during the International Polar Year 2007-2009. Permafrost and Periglacial Processes 21, 156-181. open in new tab
  11. Davaa, G., Oyunbaatar, D., 2012. Surface water resources assessment. In: Gantuul, Sh. (Ed.), Integrated Water Management National Assessment ReportGovernment of Mongolia Vol. I. Ministry of Environment And Green Development, Ulaanbaatar, pp. 9-75.
  12. Davaa, G., Oyunbaatar, D., Sugita, M., 2007. Surface water in Mongolia. In: Konagaya, Y. (Ed.), A Handbook of Mongolian Environments. Kenbunsha, Kyoto, Japan, pp. 55-68.
  13. Dejidmaa, G., Bujinlkham, B., Eviihuu, A., Entkhuya, B.T., Moenkh-Erdene, N., Oyuntuya, N., 2001. Distribution Maps of Deposits and Occurrences in Mongolia (at the Scale 1: 1,000,000). Ministry of Industry and Trade of Mongolia, Geological Information Center, Ulaanbataar.
  14. Demeusy, J., 2012. Water quality and ecological assessment. In: Gantuul, Sh. (Ed.), Inte- grated Water Management National Assessment ReportGovernment of Mongolia Vol. II. Ministry of Environment And Green Development, Ulaanbaatar, pp. 239-282.
  15. Douglas, T., Blum, J.D., Guo, L., Keller, K., Gleason, J.D., 2013. Hydrogeochemistry of sea- sonal flow regimes in the Chena River, a subarctic watershed draining discontinuous permafrost in interior Alaska (USA). Chemical Geology 335, 48-62. open in new tab
  16. Egorov, N., 1993. Mongolian salt lakes: some features of their geography, thermal pat- terns, chemistry and biology. Hydrobiologia 267, 13-21. open in new tab
  17. Farrington, J., 2000. Environmental problems of placer gold mining in the Zaamar Goldfield, Mongolia. World Placer Journal 1, 107-128.
  18. Fitts, C.R., 2002. Groundwater Science. Academic Press, Amsterdam. open in new tab
  19. Frey, K.E., McClelland, J.M., 2009. Impacts of permafrost degradation on arctic river bio- geochemistry. Hydrological Processes 23, 169-182. open in new tab
  20. Frey, K.E., Siegel, D.I., Smith, L.C., 2007. Geochemistry of west Siberian streams and their potential response to permafrost degradation. Water Resources Research 43, W03406. http://dx.doi.org/10.1029/2006WR004902. open in new tab
  21. Glazik, R., 1995. Obieg wody w klimacie kontynentalnym na przykładzie północnej Mongolii. Prace Geograficzne, 164, PAN, Wrocław, Poland (In Polish, with English Abstract). open in new tab
  22. Harris, I., Jones, P.D., Osborn, T.J., Lister, D.H., 2014. Updated high-resolution grids of monthly climatic observations -the CRU TS3.10 dataset. International Journal of Climatology 34, 623-642. open in new tab
  23. Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., 2008. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). available from http://srtm.csi. cgiar.org.
  24. Keller, K., Blum, J.D., Kling, G.W., 2010. Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed. Chemical Geology 273, 76-81. open in new tab
  25. Koch, J.C., Runkel, R.L., Striegl, R., McKnight, D.M., 2013. Hydrologic controls on the transport and cycling of carbon and nitrogen in a boreal catchment underlain by continuous permafrost. Journal of Geophysical Research: Biogeosciences 118, 698-712. open in new tab
  26. Kokelj, S.V., Zajdlik, B., Thompson, M.S., 2009. The impacts of thawing permafrost on the chemistry of lakes across the subarctic Boreal-Tundra transition, Mackenzie Delta Region, Canada. Permafrost and Periglacial Processes 20, 185-199. open in new tab
  27. Komatsu, G., Brantingham, P.J., Olsen, J.W., Baker, V.R., 2001. Paleoshoreline geomorpholo- gy of Böön Tsagaan Nuur, Tsagaan Nuur and Orog Nuur: the Valley of Lakes, Mongolia. Geomorphology 39, 83-98. open in new tab
  28. Kwadijk, J., Davaa, G., Gomboluudev, P., Natsagdorj, L., van der Linden, W., Munkhtsetseg, Z., 2012. Climate change. In: Gantuul, Sh. (Ed.), Integrated Water Management National Assessment ReportGovernment of Mongolia Vol. I. Ministry of Environment And Green Development, Ulaanbaatar, pp. 173-281.
  29. Lange, J., Kopp, B.J., Bents, M., Menzel, L., 2015. Tracing variability of runoff generation in mountainous permafrost of semi-arid northeastern Mongolia. Hydrological Processes 29, 1046-1055. open in new tab
  30. Larouche, J.R., Abbott, B.W., Bowden, W.B., Jones, J.B., 2015. The role of watershed charac- teristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams. Biogeosciences 12, 4221-4233. open in new tab
  31. Lehner, B., Verdin, K., Jarvis, A., 2008. New global hydrography derived from spaceborne elevation data. Eos, Transactions AGU 89, 93-94. open in new tab
  32. Ma, X., Yasunari, T., Ohata, T., Natsagdorj, L., Davaa, G., Oyunbaatar, D., 2003. Hydrological regime analysis of the Selenge River basin, Mongolia. Hydrological Processes 17, 2929-2945. open in new tab
  33. Manasypov, R.M., Vorobyev, S.N., Loiko, S.V., Kritzkov, I.V., Shirokova, L.S., Shevchenko, V.P., Kirpotin, S.N., Kulizhsky, S.P., Kolesnichenko, L.G., Zemtzov, V.A., Sinkinov, V.V., Pokrovsky, O.S., 2015. Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia. Biogeosciences 12, 3009-3028. open in new tab
  34. McClelland, J.W., Stieglitz, M., Pan, F., Holmes, R.M., Peterson, B.J., 2007. Recent changes in nitrate and dissolved organic carbon export from the upper Kuparuk River, North Slope, Alaska. Journal of Geophysical Research 112, G04S60. http://dx.doi.org/10. 1029/2006JG000371. open in new tab
  35. Naseem, S., Hamza, S., Nawaz-ul-Huda, S., Bashir, E., Ul-Haq, Q., 2014. Geochemistry of Cd in groundwater of Winder, Balochistan and suspected health problems. Environmen- tal Earth Sciences 71, 1683-1690. open in new tab
  36. O'Donnell, J.A., Jones Jr., J.B., 2006. Nitrogen retention in the riparian zone of catchments underlain by discontinuous permafrost. Freshwater Biology 51, 854-864. open in new tab
  37. Olefeldt, D., Persson, A., Turetsky, M.R., 2014. Influence of the permafrost dissolved organic matter rivers within the Boreal western Canada. Environmental Research Letters 9 http://dx.doi.org/10.1088/1748-9326/9/3/035005. open in new tab
  38. Petrone, K.C., Jones, J.B., Hinzman, L.D., Boone, R.D., 2006. Seasonal export of carbon, nitrogen, andmajor solutes from Alaskan catchments with discontinuous perma- frost. Journal of Geophysical Research 111, G02020. http://dx.doi.org/10.1029/ 2005JG000055. open in new tab
  39. Puntsag, T., Owen, J.S., Mitchell, M.J., Goulden, C.E., McHale, P.J., 2010. Patterns in solute chemistry of six inlet streams to Lake Hövsgöl, Mongolia. Journal of Ecology and Field Biology 33, 289-298. open in new tab
  40. Romanovsky, V.E., Smith, S.L., Christiansen, H.H., 2010. Permafrost thermal state in the polar northern hemisphere during the international polar year 2007-2009: a synthe- sis. Permafrost and Periglacial Processes 21, 106-116. open in new tab
  41. Schaefer, K., Zhang, T.J., Bruhwiler, L., Barret, A.P., 2011. Amount and timing of permafrost carbon release in response to climate warming. Tellus 63B, 165-180. open in new tab
  42. Sharkhuu, N., 2000. Regularities of permafrost distribution in Mongolia. Transactions of the Institute of Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia, pp. 217-232 (In Mongolian).
  43. Slater, A.G., Lawrence, D.M., 2013. Diagnosing present and future permafrost from climate models. Journal of Climate 26, 5608-5623. open in new tab
  44. Smith, S.L., Romanovsky, V.E., Lewkowicz, G., Burn, C.R., Allard, M., Clow, G.D., Yoshikawa, K., Throop, J., 2010. Thermal state of permafrost in North America: a contribution to the international polar year. Permafrost and Periglacial Processes 21, 117-135. open in new tab
  45. Sodnom, N., Yanshin, A.L. (Eds.), 2005. Geocryology and Geocryological Zonation of Mongolia, Version 1. [Geocryo_Regions]. open in new tab
  46. Boulder, Colorado USA. National Snow and Ice Data Center, NSIDC available from http://nsidc.org/data/docs/fgdc/ggd648_ map_mongolia. open in new tab
  47. Stotler, R.L., Frape, S.K., Ruskeeniemi, T., Ahonen, L., Onstott, T.C., Hobbs, M.Y., 2009. Hydrogeochemistry of groundwaters in and below the base of thick permafrost at Lupin, Nunavut, Canada. Journal of Hydrology 373, 80-95. open in new tab
  48. Stubblefield, A., Chandra, S., Eagan, S., Tuvshinjargal, D., Davaadorzh, G., Gilroy, D., Sampson, J., Thorne, J., Allen, B., Hogan, Z., 2005. Impacts of gold mining and land use alterations on the water quality of central Mongolian rivers. Integr. Environ. As- sess. Manag. 1, 365-373. open in new tab
  49. Szumińska, D., 2016. Changes in surface area of the Böön Tsagaan and Orog lakes (Mongolia, Valley of the Lakes, 1974-2013) compared to climate and permafrost changes. Sedimentary Geology 340, 62-73. open in new tab
  50. Thorslund, J., Jarsjö, J., Wällstedt, T., Mörth, C.M., Lychagin, M.Y., Chalov, S.R., 2014. Geo- chemical controls on the partitioning and hydrological transport of metals in a non- acidic river system. Hydrology and Earth System Sciences Discusssions 11, 9715-9758. open in new tab
  51. Tomurtogoo, O., 2004. Tectonics of Mongolia. A Brief Explanatory Note to the Tectonic Map of Mongolia at a Scale of 1:1,000,000. Mongolian Academy of Sciences, Institute of Geology and Mineral Resources, pp. 1-25.
  52. White, D., Hinzman, L.D., Alessa, L., Cassano, J., Chambers, M., Falkner, K., Francis, J., Gutowski, W.J., Holland, M., Holmes, R.M., Huntington, H., Kane, D.L., Kliskey, A., Lee, C., McClelland, J., Peterson, B., Rupp, T.S., Straneo, F., Steele, M., Woodgate, R., Yang, D., Yoshikawa, K., Zhang, T., 2007. The Arctic freshwater system: changes and impacts. Journal of Geophys- ical Research 112, G04S54. http://dx.doi.org/10.1029/2006JG000353. open in new tab
  53. Williams, W.D., 1991. Chinese and Mongolian saline lakes: a limnological overview. Hydrobiologia 210, 39-66. open in new tab
  54. Yang, X., 2006. Chemistry and late Quaternary evolution of ground and surface waters in the area of Yabulai Mountains, western Inner Mongolia, China. Catena 66, 135-144. open in new tab
  55. Yang, X., Williams, M.J., 2003. The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China. Catena 51, 45-60. open in new tab
  56. Yang, Z., Ou, Y.H., Xu, X., Zhao, L., Song, M., Zhou, C., 2010. Effects of permafrost degrada- tion on ecosystems. Acta Ecologica Sinica 30, 33-39. open in new tab
  57. Zhang, Y., Chen, W.J., Riseborough, D.W., 2008. Disequilibrium response of permafrost thaw to climate warming in Canada over 1850-2100. Geophysical Research Letters 35, L02502. http://dx.doi.org/10.1029/2007GL032117. open in new tab
  58. Zhao, L., Wu, Q., Marchenko, S.S., Sharkhuu, N., 2010. Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafrost and Periglacial Processes 21, 198-207. open in new tab
Verified by:
Gdańsk University of Technology

seen 124 times

Recommended for you

Meta Tags