The domination of ionic conductivity in tetragonal phase of the organometal halide perovskite CH3NH3PbI3-xClx - Publication - Bridge of Knowledge

Search

The domination of ionic conductivity in tetragonal phase of the organometal halide perovskite CH3NH3PbI3-xClx

Abstract

Organometal trihalide perovskites have recently gained extreme attention due to their high solar energy conversion in photovoltaic cells. Here, we investigate the contribution of iodide ions to a total conductivity of the mixed lead halide perovskite CH3NH3PbI3−xClx with a use of the modified DC Hebb–Wagner polarization method. It has been identified that an ionic conductivity dominates in tetragonal phase which is associated with room temperature. The obtained activation energy for this type of hopping mechanism is equal to (0.87 ± 0.02) eV, which is in a good agreement with previous literature reports. The high contribution of ionic conductivity at room temperature might be a reason of the observed hysteresis in halide perovskite solar cells.

Citations

  • 1 8

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Cite as

Full text

download paper
downloaded 107 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
SOLID STATE SCIENCES no. 82, pages 19 - 23,
ISSN: 1293-2558
Language:
English
Publication year:
2018
Bibliographic description:
Głowienka D., Miruszewski T., Szmytkowski J.: The domination of ionic conductivity in tetragonal phase of the organometal halide perovskite CH3NH3PbI3-xClx// SOLID STATE SCIENCES. -Vol. 82, (2018), s.19-23
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.solidstatesciences.2018.05.009
Bibliography: test
  1. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance, Science 354 (6309). open in new tab
  2. X. Zhu, D. Yang, R. Yang, B. Yang, Z. Yang, X. Ren, J. Zhang, J. Niu, J. Feng, S. F. Liu, Superior Stability for Perovskite Solar Cells with 20% Efficiency Using Vacuum Co-evaporation, Nanoscale 9 (34) (2017) 12316- 12323. open in new tab
  3. Y. M. Wang, S. Bai, L. Cheng, N. N. Wang, J. P. Wang, F. Gao, W. Huang, High-Efficiency Flexible Solar Cells Based on Organometal Halide Per- ovskites, Adv. Mater. 28 (22) (2016) 4532-4540. open in new tab
  4. T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, E. M. J. Johansson, I. J. McPherson, H. Rensmo, J. M. Ball, M. M. Lee, H. J. Snaith, Elec- tronic Properties of Meso-Superstructured and Planar Organometal Halide Perovskite Films: Charge Trapping, Photodoping, and Carrier Mobility, ACS Nano 8 (7) (2014) 7147-7155. open in new tab
  5. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Direct Measurement of the Exci- ton Binding Energy and Effective Masses for Charge Carriers in Organic- Inorganic Tri-halide Perovskites, Nat. Phys. 11 (7) (2015) 582-587. open in new tab
  6. Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, Electro-Optics of Perovskite Solar Cells, Nat. Photonics 9 (2) (2015) 106-112. open in new tab
  7. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science 342 (6156) (2013) 341-344. open in new tab
  8. X. Ren, Z. Wang, W. E. Sha, W. C. Choy, Exploring the Way To Approach the Efficiency Limit of Perovskite Solar Cells by Drift-Diffusion Model, ACS Photonics 4 (4) (2017) 934-942. open in new tab
  9. W. E. I. Sha, X. Ren, L. Chen, W. C. H. Choy, The Efficiency Limit of CH 3 NH 3 PbI 3 Perovskite Solar Cells, Appl. Phys. Lett. 106 (22) (2015) 221104. open in new tab
  10. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 5 (9) (2014) 1511-1515. open in new tab
  11. A. K. Jena, H.-W. Chen, A. Kogo, Y. Sanehira, M. Ikegami, T. Miyasaka, The Interface between FTO and the TiO 2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells, ACS Appl. Mater. Interfaces 7 (18) (2015) 9817-9823. open in new tab
  12. B. Chen, M. Yang, S. Priya, K. Zhu, Origin of J-V Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 7 (5) (2016) 905-917. open in new tab
  13. L. Cojocaru, S. Uchida, P. V. V. Jayaweera, S. Kaneko, J. Nakazaki, T. Kubo, H. Segawa, Origin of the Hysteresis in I V Curves for Planar Structure Perovskite Solar Cells Rationalized with a Surface Boundary- induced Capacitance Model, Chem. Lett. 44 (12) (2015) 1750-1752. open in new tab
  14. S. van Reenen, M. Kemerink, H. J. Snaith, Modeling Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 6 (19) (2015) 3808-3814. open in new tab
  15. W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel, Understanding the Rate-Dependent J-V Hysteresis, Slow Time Component, and Aging in CH 3 NH 3 PbI 3 Perovskite Solar Cells: the Role of a Compensated Electric Field, Energy Environ. Sci. 8 (3) (2015) 995-1004. open in new tab
  16. S. G, P. Mahale, B. P. Kore, S. Mukherjee, M. S. Pavan, C. De, S. Ghara, A. Sundaresan, A. Pandey, T. N. Guru Row, D. D. Sarma, Is CH 3 NH 3 PbI 3 Polar?, J. Phys. Chem. Lett. 7 (13) (2016) 2412-2419.
  17. H. Röhm, T. Leonhard, M. J. Hoffmann, A. Colsmann, Ferroelectric do- mains in methylammonium lead iodide perovskite thin-films, Energy Env- iron. Sci. 10 (4) (2017) 950-955. open in new tab
  18. A. M. A. Leguy, J. M. Frost, A. P. McMahon, V. G. Sakai, W. Kochel- mann, C. Law, X. Li, F. Foglia, A. Walsh, B. C. O'Regan, J. Nelson, J. T. Cabral, P. R. F. Barnes, The Dynamics of Methylammonium Ions in Hybrid Organic-Inorganic Perovskite Solar Cells, Nat. Commun. 6 (2015) 7124. open in new tab
  19. S. Kim, S. Bae, S. W. Lee, K. Cho, K. D. Lee, H. Kim, S. Park, G. Kwon, S. W. Ahn, H. M. Lee, Y. Kang, H. S. Lee, D. Kim, Relationship between ion migration and interfacial degradation of CH3NH3PbI3perovskite solar cells under thermal conditions, Sci. Rep. 7 (1) (2017) 1-9. open in new tab
  20. Z. Xiao, Y. Yuan, Y. Shao, Q. Wang, Q. Dong, C. Bi, P. Sharma, A. Gru- verman, J. Huang, Giant switchable photovoltaic effect in organometal tri- halide perovskite devices, Nat. Mater. 14 (2) (2015) 193-197. open in new tab
  21. J. B. Goodenough, Electronic and Ionic Transport Properties and Other Physical Aspects of Perovskites, Rep. Prog. Phys. 67 (11) (2004) 1915-1993. open in new tab
  22. T. Miruszewski, J. Karczewski, B. Bochentyn, P. Jasinski, M. Gazda, B. Kusz, Determination of the Ionic Conductivity of Sr-doped Lanthanum Manganite by Modified Hebb-Wagner Technique, J. Phys. Chem. Solids 91 (2016) 163-169. open in new tab
  23. J. Mizusaki, K. Arai, K. Fueki, Ionic Conduction of the Perovskite-Type Halides, Solid State Ion. 11 (3) (1983) 203-211. open in new tab
  24. A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, M. Grätzel, Impedance Spectroscopic Analysis of Lead Io- dide Perovskite-Sensitized Solid-State Solar Cells, ACS Nano 8 (1) (2014) 362-373. open in new tab
  25. P. Calado, A. M. Telford, D. Bryant, X. Li, J. Nelson, B. C. O'Regan, P. R. Barnes, Evidence for Ion Migration in Hybrid Perovskite Solar Cells with Minimal Hysteresis, Nat. Commun. 7 (2016) 13831. open in new tab
  26. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O'Regan, A. Walsh, M. S. Islam, Ionic Ttransport in Hybrid Lead Iodide Perovskite Solar Cells, Nat. Commun. 6 (2015) 7497. open in new tab
  27. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, T. J. White, Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH 3 NH 3 )PbI 3 ) for Solid-State Sensitised Solar Cell Applica- tions, J. Mater. Chem. A 1 (18) (2013) 5628. open in new tab
  28. Y. Kawamura, H. Mashiyama, K. Hasebe, Structural Study on Cubic- Tetragonal Transition of CH 3 NH 3 PbI 3 , J. Phys. Soc. Jpn. 71 (7) (2002) 1694-1697. open in new tab
  29. A. Maalej, Y. Abid, A. Kallel, A. Daoud, A. Lautié, F. Romain, Phase Transitions and Crystal Dynamics in the Cubic Perovskite CH 3 NH 3 PbCl 3 , Solid State Commun. 103 (5) (1997) 279-284. open in new tab
  30. R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, L. M. Herz, Temperature-Dependent Charge-Carrier Dynamics in CH 3 NH 3 PbI 3 Per- ovskite Thin Films, Adv. Funct. Mater. 25 (39) (2015) 6218-6227. open in new tab
  31. A. Slonopas, B. J. Foley, J. J. Choi, M. C. Gupta, Charge Transport in Bulk CH 3 NH 3 PbI 3 Perovskite, J. Appl. Phys. 119 (7) (2016) 74101. open in new tab
  32. W. Weppner, R. A. Huggins, Ionic Conductivity of Alkali Metal Chloroa- luminates, Phys. Lett. A 58 (4) (1976) 245-248. open in new tab
  33. I. Riess, Four Point Hebb-Wagner Polarization Method for Determining the Electronic Conductivity in Mixed Ionic-Electronic Conductors, Solid State Ion. 51 (3) (1992) 219-229. open in new tab
  34. I. Riess, Measurement of Ionic Conductivity in Semiconductors and Metals, Solid State Ion. 44 (3-4) (1991) 199-205. open in new tab
  35. I. Riess, Review of the Limitation of the Hebb-Wagner Polarization Method for Measuring Partial Conductivities in Mixed Ionic Electronic Conductors, Solid State Ion. 91 (3-4) (1996) 221-232. open in new tab
  36. K. C. Lee, H. I. Yoo, Hebb-Wagner-Type Polarization/Relaxation in the Presence of the Cross Effect Between Electronic and Ionic Flows in a Mixed Conductor, J. Phys. Chem. Solids 60 (7) (1999) 911-927. open in new tab
  37. K. H. Kim, T. Lee, W. Joo, H. I. Yoo, Current vs. Voltage Behavior of Hebb-Wagner Ion-Blocking Cell through Compound (Bi 1.46 Y 0.54 O 3 ) De- composition and Decomposition Kinetics, Solid State Ion. 267 (2014) 9-15. open in new tab
  38. M. Maeda, M. Hattori, A. Hotta, I. Suzuki, Dielectric Studies on CH 3 NH 3 PbX 3 (X = Cl and Br) Single Cystals, J. Phys. Soc. Jpn. 66 (5) (1997) 1508-1511. open in new tab
  39. Z.-L. Tseng, C.-H. Chiang, C.-G. Wu, Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells, Sci. Rep. 5 (2015) 13211. open in new tab
  40. H.-B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. Y. Kim, Mixed Solvents for the Optimization of Morphology in Solution-Processed, Inverted-Type Perovskite/Fullerene Hybrid Solar Cells, Nanoscale 6 (12) (2014) 6679-6683. open in new tab
  41. J. Lian, Q. Wang, Y. Yuan, Y. Shao, J. Huang, Organic Solvent Vapor Sensitive Methylammonium Lead Trihalide Film Formation for Efficient Hybrid Perovskite Solar Cells, J. Mater. Chem. A 3 (17) (2015) 9146-9151. open in new tab
  42. K. Wu, A. Bera, C. Ma, Y. Du, Y. Yang, L. Li, T. Wu, Temperature- Dependent Excitonic Photoluminescence of Hybrid Organometal Halide Perovskite Films, Phys. Chem. Chem. Phys. 16 (41) (2014) 22476-22481. open in new tab
  43. D. Koushik, W. J. H. Verhees, Y. Kuang, S. Veenstra, D. Zhang, M. A. Verheijen, M. Creatore, R. E. I. Schropp, High-Efficiency Humidity-Stable Planar Perovskite Solar Cells Based on Atomic Layer Architecture, Energy Environ. Sci. 10 (1) (2017) 91-100. open in new tab
  44. H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao, The Role of Chlorine in the Formation Process of "CH 3 NH 3 PbI 3−x Cl x " Perovskite, Adv. Funct. Mater. 24 (45) (2014) 7102-7108. open in new tab
  45. C. Motta, F. El-Mellouhi, S. Sanvito, Charge Carrier Mobility in Hybrid Halide Perovskites, Sci. Rep. 5 (1) (2015) 12746. open in new tab
  46. M. V. Khenkin, D. V. Amasev, S. A. Kozyukhin, A. V. Sadovnikov, E. A. Katz, A. G. Kazanskii, Temperature and spectral dependence of CH 3 NH 3 )PbI 3 films photoconductivity, Applied Physics Letters 110 (22) (2017) 222107. open in new tab
  47. W. Peng, J. Yin, K. T. Ho, O. Ouellette, M. De Bastiani, B. Murali, O. El Tall, C. Shen, X. Miao, J. Pan, E. Alarousu, J. H. He, B. S. Ooi, O. F. Mohammed, E. Sargent, O. M. Bakr, Ultralow Self-Doping in Two- dimensional Hybrid Perovskite Single Crystals, Nano Lett. 17 (8) (2017) 4759-4767. open in new tab
  48. D. Li, W. Gongming, C. Hung-Chieh, C. Chih-Yen, W. Hao, L. Yuan, H. Yu, D. Xiangfeng, Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals, Nat. Commun. 9 (2016) 11330. open in new tab
  49. P. S. Whitfield, N. Herron, W. E. Guise, K. Page, Y. Q. Cheng, I. Milas, M. K. Crawford, Structures, Phase Transitions and Tricritical Behavior of the Hybrid Perovskite Methyl Ammonium Lead Iodide, Sci. Rep. 6 (2016) 35685. open in new tab
  50. A. Dobrovolsky, A. Merdasa, E. L. Unger, A. Yartsev, I. G. Scheblykin, Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites, Nature Communications 8 (1) (2017) 1-7. open in new tab
  51. N. Onoda-Yamamuro, T. Matsuo, H. Suga, Dielectric Study of CH3NH3PbX3 (X = Cl, Br, I), J. Phys. Chem. Solids 53 (7) (1992) 935- 939. open in new tab
  52. V. D'Innocenzo, G. Grancini, M. J. P. Alcocer, A. R. S. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, A. Petrozza, Excitons versus free charges in organo-lead tri-halide perovskites, Nat. Commun. 5 (2014) 3586. open in new tab
  53. H. D. Kim, H. Ohkita, H. Benten, S. Ito, Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes, Adv. Mater. 28 (5) (2016) 917-922. open in new tab
  54. T. S. Sherkar, C. Momblona, L. Gil-Escrig, H. J. Bolink, L. J. A. Koster, Improving Perovskite Solar Cells: Insights From a Validated Device Model, Adv. Energy Mater. 7 (13). open in new tab
  55. R. L. Narayan, S. V. Suryanarayana, Transport Properties of the Perovskite-Type Halides, Mater. Lett. 11 (8-9) (1991) 305-308. open in new tab
  56. T. Kuku, Ionic Transport and Galvanic Cell Discharge Characteristics of CuPbI 3 Thin Films, Thin Solid Films 325 (1-2) (1998) 246-250. open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 161 times

Recommended for you

Meta Tags