The In-Depth Studies of Pulsed UV Laser-Modified TiO2 Nanotubes: The Influence of Geometry, Crystallinity, and Processing Parameters - Publication - Bridge of Knowledge

Search

The In-Depth Studies of Pulsed UV Laser-Modified TiO2 Nanotubes: The Influence of Geometry, Crystallinity, and Processing Parameters

Abstract

The laser processing of the titania nanotubes has been investigated in terms of morphology, structure, and optical properties of the obtained material. The length of the nanotubes and crystallinity, as well as the atmosphere of the laser treatment, were taken into account. The degree of changes of the initial geometry of nanotubes were checked by means of scanning electron microscopy, which visualizes both the surface and the cross-section. The phase conversion from the amorphous to anatase has been achieved for laser-treated amorphous material, whereas modification of calcined one led to distortion within the crystal structure. This result is confirmed both by Raman and grazing incident XRD measurements. The latter studies provided an in-depth analysis of the crystalline arrangement and allowed also for determining the propagation of laser modification. The narrowing of the optical bandgap for laser-treated samples has been observed. Laser treatment of TiO2 nanotubes can lead to the preparation of the material of desired structural and optical parameters. The usage of the motorized table during processing enables induction of changes in the precisely selected area of the sample within a very short time.

Citations

  • 1 2

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 43 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Nanomaterials no. 10,
ISSN: 2079-4991
Language:
Polish
Publication year:
2020
Bibliographic description:
Haryński Ł., Grochowska K., Kupracz P., Karczewski J., Coy E., Siuzdak K.: The In-Depth Studies of Pulsed UV Laser-Modified TiO2 Nanotubes: The Influence of Geometry, Crystallinity, and Processing Parameters// Nanomaterials -Vol. 10,nr. 3 (2020), s.430-
DOI:
Digital Object Identifier (open in new tab) 10.3390/nano10030430
Bibliography: test
  1. Taziwa, R.; Meyer, E.; Zinya, S. A microscopy study of the effect of annealing temperature on the morphological and structural properties of titanium dioxide nanotubes fabricated on functional substrates. Int. J. Nanotechnol. Eng. Med. 2018, 3, 16-27.
  2. He, G.; Zhang, J.; Hu, Y.; Bai, Z.; Wei, C. Dual-template synthesis of mesoporous TiO 2 nanotubes with structure-enhanced functional photocatalytic performance. Appl. Catal. B 2019, 250, 301-312. [CrossRef] open in new tab
  3. Huang, J.; Cao, Y.; Deng, Z.; Tong, H. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment. J. Solid State Chem. 2011, 184, 712-719. [CrossRef] open in new tab
  4. Regonini, D.; Bowen, C.R.; Jaroenworaluck, A.; Stevens, R. A review of growth mechanism, structure and crystallinity of anodized TiO 2 nanotubes. Mater. Sci. Eng. R 2013, 74, 377-406. [CrossRef] open in new tab
  5. Wang, J.; Li, H.; Sun, Y.; Bai, B.; Zhang, Y.; Fan, Y. Anodization of Highly Ordered TiO 2 Nanotube Arrays Using Orthogonal Design and Its Wettability. Int. J. Electrochem. Sci. 2016, 11, 710-723. open in new tab
  6. Zwilling, V.; Darque-Ceretti, E.; Boutry-Forveille, A.; David, D.; Perrin, M.Y.; Aucouturier, M.Y. Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy. Surf. Interface Anal. 1999, 27, 629-637. [CrossRef] open in new tab
  7. Galstyan, V.; Vomiero, A.; Comini, E.; Faglia, G.; Sberveglieri, G. TiO 2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. RSC Adv. 2011, 1, 1038-1044. [CrossRef] open in new tab
  8. Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglic, A. Influence of anodization parameters on morphology of TiO 2 nanostructured surfaces. Adv. Mater. Lett. 2016, 7, 23-28. [CrossRef] open in new tab
  9. Galstyan, V.; Comini, E.; Baratto, C.; Ponzoni, A.; Ferroni, M.; Poli, N.; Bontempi, E.; Brisotto, M.; Faglia, G.; Sbervegliery, G. Large surface area biphase titania for chemical sensing. Sens. Actuator B Chem. 2015, 209, 1091-1096. [CrossRef] open in new tab
  10. Liao, Y.; Que, W.; Zhong, P.; Zhang, J.; He, Y. A facile method to crystallize amorphous anodized TiO 2 nanotubes at low temperature. ACS Appl. Mater. Interfaces 2011, 3, 2800-2804. [CrossRef] open in new tab
  11. Wang, D.; Liu, L.; Zhang, F.; Tao, K.; Pippel, E.; Domen, K. Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature. Nano Lett. 2011, 3649-3655. [CrossRef] [PubMed] open in new tab
  12. Lamberti, A.; Chiodoni, A.; Shahzad, N.; Bianco, S.; Quaglio, M.; Pirri, C.F. Ultrafast Room-Temperature Crystallization of TiO 2 Nanotubes Exploiting Water-Vapor Treatment. Sci. Rep. 2015, 5, 7808. [CrossRef] [PubMed] open in new tab
  13. Benčina, M.; Junkar, I.; Zaplotnik, R.; Valant, M.; Iglič, A.; Mozetič, M. Plasma-Induced Crystallization of TiO 2 Nanotubes. Materials 2019, 12, 626. [CrossRef] [PubMed] open in new tab
  14. Joya, Y.F.; Liu, Z.; Wang, Z. Generation of silver-anatase nanocomposite by excimer laser-assisted processing. AIP Adv. 2012, 2, 032171. [CrossRef] open in new tab
  15. Overschelde, O.V.; Guisbiers, G.; Wautelet, M. Nanocrystallization of Anatase or Rutile TiO 2 by Laser Treatment. J. Phys. Chem. C 2009, 113, 15343-15345. [CrossRef] open in new tab
  16. Vásquez, G.C.; Peche-Herrero, M.A.; Maestre, D.; Gianoncelli, A.; Ramírez-Castellanos, J.; Cremades, A.; González-Calbet, J.M.; Piqueras, J. Laser-Induced Anatase-to-Rutile Transition in TiO 2 Nanoparticles: Promotion and Inhibition Effects by Fe and Al Doping and Achievement of Micropatterning. J. Chem. Phys. C 2015, 119, 11965-11974. [CrossRef] open in new tab
  17. Likodimos, V.; Stergiopoulos, T.; Falaras, P.; Kunze, J.; Schmuki, P. Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays: A Polarized Micro-Raman Investigation. J. Phys. Chem. C 2008, 12687-12969. [CrossRef] open in new tab
  18. Hsu, M.; Thang, N.V.; Wang, C.; Leu, J. Structural and morphological transformations of TiO 2 nanotube arrays induced by excimer laser treatment. Thin Solid Films 2012, 3593-3599. [CrossRef] open in new tab
  19. Enachi, M.; Stevens-Kalceff, M.A.; Sarua, A.; Ursaki, V.; Tiginyanu, I. Design of titania nanotube structures by focused laser beam direct writing. J. Appl. Phys. 2013, 114, 234302. [CrossRef] open in new tab
  20. Xu, Y.; Melia, M.A.; Tsui, L.; Fitz-Gerald, J.M.; Zangari, G. Laser-Induced Surface Modification at Anatase TiO 2 Nanotube Array Photoanodes for Photoelectrochemical Water Oxidation. J. Phys. Chem. C 2017, 121, 17121-17128. [CrossRef] open in new tab
  21. Tighineanu, A.; Ruff, T.; Albu, S.; Hahn, R.; Schmuki, P. Conductivity of TiO 2 nanotubes: Influence of annealing time and temperature. Chem. Phys. Lett. 2010, 494, 260-263. [CrossRef] open in new tab
  22. Tighineanu, A. Electrical Conductivity of TiO 2 Nanotubes. Ph.D. Thesis, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany, 14 September 2015.
  23. Guo, L.; Wang, J.; Lin, Z.; Gacek, S.; Wang, X. Anisotropic thermal transport in highly ordered TiO 2 nanotube arrays. Int. J. Appl. 2009, 106, 123526. [CrossRef] open in new tab
  24. Nishikawa, M.; Fukuda, M.; Nakabayashi, Y.; Saito, N.; Ogawa, N.; Nakajima, T.; Shinoda, K.; Tsuchiya, T.; Nosaka, Y. A method to give chemically stabilities of photoelectrodes for water splitting: Compositing of a highly crystalized TiO 2 layer on a chemically unstable Cu 2 O photocathode using laser-induced crystallization process. Appl. Surf. Sci. 2016, 363, 173-180. [CrossRef] open in new tab
  25. Siuzdak, K.; Szkoda, M.; Sawczak, M.; Karczewski, J.; Ryl, J.; Cenian, A. Ordered titania nanotubes layer selectively annealed by laser beam for high contrast electrochromic switching. Thin Solid Films 2018, 659, 48-56. [CrossRef] open in new tab
  26. Haryński, Ł.; Grochowska, K.; Karczewski, J.; Ryl, J.; Siuzdak, K. Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO 2 Nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 3225-3235. [CrossRef] [PubMed] open in new tab
  27. Henke, B.L.; Gullikson, E.M.; Davis, J.C. X-ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92. Atom. Data Nucl. Data 1993, 54, 181-342. [CrossRef] open in new tab
  28. Fernández-García, M.; Wang, X.; Belver, C.; Hanson, J.C.; Rodriguez, J.A. Anatase-TiO 2 Nanomaterials: Morphological/Size Dependence of the Crystallization and Phase Behavior Phenomena. J. Phys. Chem. C 2007, 111, 674-682. [CrossRef] open in new tab
  29. Krishnan, K.; Krishnan, R.S. Raman and infrared spectra of ethylene glycol. Proc. Indian AS-Math. Sci. 1966, 111-122. [CrossRef] open in new tab
  30. Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [CrossRef] open in new tab
  31. Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891-2959. [CrossRef] open in new tab
  32. Wang, B.; Shen, S.; Mao, S.S. Black TiO 2 for solar hydrogen conversion. J. Materiomics 2017, 3, 96-111. [CrossRef] open in new tab
  33. Freitas, R.G.; Santanna, M.A.; Pereira, E.C. Dependence of TiO 2 nanotube microstructural and electronic properties on water splitting. J. Power Sources 2014, 251, 178-186. [CrossRef] open in new tab
  34. Prasai, B.; Cai, B.; Underwood, M.K.; Lewis, J.P.; Drabold, D.A. Properties of amorphous and crystalline titanium dioxide from first principles. J. Mater. Sci. 2012, 47, 7515-7521. [CrossRef] open in new tab
  35. Dette, C.; Perez-Osorio, M.A.; Kley, C.S.; Punke, P.; Patrick, C.E.; Jacobson, P.; Giustino, F.; Jung, J.S.; Kern, K. Anatase with a Bandgap in the Visible Region. Nano Lett. 2014, 14, 6533-6538. [CrossRef] open in new tab
  36. Ly, N.T.; Nguyen, V.C.; Dao, T.H.; To, L.H.H.; Pham, D.L.; Do, H.M.; Vu, D.L.; Le, V.H. Optical properties of TiO 2 nanotube arrays fabricated by the electrochemical anodization method. Adv. Nat. Sci. Nanosci. 2014, 015004. [CrossRef] open in new tab
  37. Mathew, S.; Prasad, A.K.; Benoy, A.T.; Rakesh, P.P.; Hari, M.; Libish, T.M.; Radhakrishnan, P.; Nampoori, V.P.N.; Vallabhan, C.P.G. UV-Visible Photoluminescence of TiO 2 Nanoparticles Prepared by Hydrothermal Method. J. Fluoresc. 2012, 22, 1563-1569. [CrossRef] open in new tab
  38. Stevanovic, A.; Büttner, M.; Zhang, Z.; Yates, J.T. Photoluminescence of TiO 2 : Effect of UV Light and Adsorbed Molecules on Surface Band Structure. J. Am. Chem. Soc. 2012, 134, 324-332. [CrossRef] open in new tab
  39. Mercado, C.; Seeley, Z.; Bandyopadhyay, A.; Bose, S.; McHale, J.L. Photoluminescence of Dense Nanocrystalline Titanium Dioxide Thin Films: Effect of Doping and Thickness and Relation to Gas Sensing. ACS Appl. Mater. Interfaces 2011, 3, 2281-2288. [CrossRef] open in new tab
  40. Abazović, N.D.;Čomor, M.I.; Dramićanin, M.D.; Jovanović, D.J.; Ahrenkiel, S.P.; Nedeljković, J.M. Photoluminescence of Anatase and Rutile TiO 2 Particles. J. Phys. Chem. B 2006, 110, 25366-25370. [CrossRef] open in new tab
  41. Pallotti, D.K.; Passoni, L.; Maddalena, P.; Fonzo, F.D.; Lattieri, S. Photoluminescence Mechanisms in Anatase and Rutile TiO 2 . J. Chem. Phys. 2017, 9011-9021. [CrossRef] open in new tab
  42. Jung, K.Y.; Park, S.B.; Anpo, M. Photoluminescence and photoactivity of titania particles prepared by the sol-gel technique: Effect of calcination temperature. J. Photoch. Photobiol. A 2005, 170, 247-252. [CrossRef] open in new tab
Verified by:
Gdańsk University of Technology

seen 72 times

Recommended for you

Meta Tags