The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells - Publication - Bridge of Knowledge

Search

The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells

Abstract

The effect of anchoring group position and, in consequence, the orientation of the ruthenium dye molecule on titania surface on the performance of dye-sensitized solar cells has been studied intensively. Three model ruthenium sensitizing dyes bearing carboxylic anchoring group in ortho, meta or para position were synthesized and well characterized by spectroscopic, electrochemical, photophysical and photochemical measurements. The results were confronted with the quantum-mechanical calculations and discussed. The para derivative has been found as the most effective sensitizer with the cells efficiency twice higher than the meta and four times higher than the ortho derivatives.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 3

    Scopus

Authors (9)

Cite as

Full text

download paper
downloaded 70 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
DYES AND PIGMENTS pages 335 - 346,
ISSN: 0143-7208
Language:
English
Publication year:
2018
Bibliographic description:
Zals M., Gierczyk B., Bossi A., Mussini P., Klein M., Pankiewicz R., Makowska-Janusik M., Popenda Ł., Stampor W.: The influence of anchoring group position in ruthenium dye molecule on performance of dye-sensitized solar cells// DYES AND PIGMENTS. -, nr. 150 (2018), s.335-346
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.dyepig.2017.12.029
Bibliography: test
  1. This work was partly financially supported from Regione Lombardia and Cariplo Foundation (grant No. 2013-1766) within the SmartMatLab Centre project. The financial support of National Science Centre, Poland, within the project No. open in new tab
  2. M. K. was additionally supported by the Foundation for Polish Science (FNP).
  3. Calculations have been partially carried out at the Wroclaw Centre for Networking and Supercomputing <http://www.wcss.wroc.pl> (Grant no. 171). open in new tab
  4. M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344. open in new tab
  5. M. Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4 (2003) 145-153. open in new tab
  6. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells, Chem. Rev., 110 (2010) 6595-6663. open in new tab
  7. A. Hagfeldt, M. Grätzel, Molecular Photovoltaics, Acc. Chem. Res., 33 (2000) 269-277. open in new tab
  8. G.C. Vougioukalakis, A.I. Philippopoulos, T. Stergiopoulos, P. Falaras, Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells, Coord. Chem. Rev., 255 (2011) 2602-2621. open in new tab
  9. M. Grätzel, Recent Advances in Sensitized Mesoscopic Solar Cells, Acc. Chem. Res., 42 (2009) 1788-1798. open in new tab
  10. S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nature Chemistry, 6 (2014) 242-247. open in new tab
  11. T. Higashino, H. Imahori, Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights, Dalton Transactions, 44 (2015) 448-463. open in new tab
  12. M. Ishida, D. Hwang, Z. Zhang, Y.J. Choi, J. Oh, V.M. Lynch, D.Y. Kim, J.L. Sessler, D. Kim, β-Functionalized Push-Pull Porphyrin Sensitizers in Dye-Sensitized Solar Cells: Effect of π-Conjugated Spacers, ChemSusChem, 8 (2015) 2967-2977. open in new tab
  13. C.-W. Lee, H.-P. Lu, C.-M. Lan, Y.-L. Huang, Y.-R. Liang, W.-N. Yen, Y.-C. Liu, Y.-S.
  14. Lin, E.W.-G. Diau, C.-Y. Yeh, Novel Zinc Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Synthesis and Spectral, Electrochemical, and Photovoltaic Properties, Chemistry -A European Journal, 15 (2009) 1403-1412.
  15. T. Funaki, M. Yanagida, N. Onozawa-Komatsuzaki, Y. Kawanishi, K. Kasuga, H. Sugihara, Ruthenium (II) complexes with π expanded ligand having phenylene-ethynylene moiety as sensitizers for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 93 (2009) 729-732. open in new tab
  16. K.L. Vincent Joseph, A. Anthonysamy, R. Easwaramoorthi, D.V. Shinde, V. Ganapathy, S. Karthikeyan, J. Lee, T. Park, S.-W. Rhee, K.S. Kim, J.K. Kim, Cyanoacetic acid tethered thiophene for well-matched LUMO level in Ru(II)-terpyridine dye sensitized solar cells, Dyes and Pigments, 126 (2016) 270-278. open in new tab
  17. M. Zalas, B. Gierczyk, M. Klein, K. Siuzdak, T. Pędziński, T. Łuczak, Synthesis of a novel dinuclear ruthenium polypyridine dye for dye-sensitized solar cells application, Polyhedron, 67 (2014) 381-387. open in new tab
  18. M. Zalas, B. Gierczyk, M. Cegłowski, G. Schroeder, Synthesis of new dendritic antenna- like polypyridine ligands, Chem. Pap., 66 (2012) 733-740. open in new tab
  19. T.J. Meyer, G.J. Meyer, B.W. Pfennig, J.R. Schoonover, C.J. Timpson, J.F. Wall, C. Kobusch, X. Chen, B.M. Peek, Molecular-Level Electron Transfer and Excited State Assemblies on Surfaces of Metal Oxides and Glass, Inorg. Chem., 33 (1994) 3952-3964. open in new tab
  20. Y.-j. Hou, P.-h. Xie, B.-w. Zhang, Y. Cao, X.-r. Xiao, W.-b. Wang, Influence of the Attaching Group and Substituted Position in the Photosensitization Behavior of Ruthenium Polypyridyl Complexes, Inorg. Chem., 38 (1999) 6320-6322. open in new tab
  21. R. Argazzi, N.Y. Murakami Iha, H. Zabri, F. Odobel, C.A. Bignozzi, Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors, Coord. Chem. Rev., 248 (2004) 1299-1316. open in new tab
  22. A.S. Hart, C.B. Kc, H.B. Gobeze, L.R. Sequeira, F. D'Souza, Porphyrin-Sensitized Solar Cells: Effect of Carboxyl Anchor Group Orientation on the Cell Performance, ACS Applied Materials & Interfaces, 5 (2013) 5314-5323. open in new tab
  23. J. Chen, Y. Sheng, S. Ko, L. Liu, H. Han, X. Li, Push-pull porphyrins with different anchoring group orientations for fully printable monolithic dye-sensitized solar cells with mesoscopic carbon counter electrodes, New J. Chem., 39 (2015) 5231-5239. open in new tab
  24. R.B. Ambre, S.B. Mane, G.-F. Chang, C.-H. Hung, Effects of Number and Position of Meta and Para Carboxyphenyl Groups of Zinc Porphyrins in Dye-Sensitized Solar Cells: Structure-Performance Relationship, ACS Applied Materials & Interfaces, 7 (2015) 1879- 1891. open in new tab
  25. K. Kilså, E.I. Mayo, D. Kuciauskas, R. Villahermosa, N.S. Lewis, J.R. Winkler, H.B. open in new tab
  26. Gray, Effects of Bridging Ligands on the Current−Potential Behavior and Interfacial Kinetics of Ruthenium-Sensitized Nanocrystalline TiO2 Photoelectrodes, The Journal of Physical Chemistry A, 107 (2003) 3379-3383.
  27. V. Grosshenny, F.M. Romero, R. Ziessel, Construction of Preorganized Polytopic Ligands via Palladium-Promoted Cross-Coupling Reactions, The Journal of Organic Chemistry, 62 (1997) 1491-1500. open in new tab
  28. G. Gritzner, J. Kuta, International union of pure and applied chemistry physical chemistry division commission on electrochemistry recommendations on reporting electrode potentials in nonaqueous solvents, Pure and Applied Chemistry, 56 (1984) 461-466. open in new tab
  29. C. Baldoli, S. Bertuolo, E. Licandro, L. Viglianti, P. Mussini, G. Marotta, P. Salvatori, F. De Angelis, P. Manca, N. Manfredi, A. Abbotto, Benzodithiophene based organic dyes for DSSC: Effect of alkyl chain substitution on dye efficiency, Dyes and Pigments, 121 (2015) 351-362. open in new tab
  30. U. Opara Krasovec, M. Berginc, M. Hocevar, M. Topic, Unique TiO2 paste for high efficiency dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 93 (2009) 379- 381.
  31. M. Zalas, M. Walkowiak, G. Schroeder, Increase in efficiency of dye-sensitized solar cells by porous TiO2 layer modification with gadolinium-containing thin layer, Journal of Rare Earths, 29 (2011) 783-786. open in new tab
  32. J. Sobuś, J. Kubicki, G. Burdziński, M. Ziółek, Carbazole Dye-Sensitized Solar Cells Studied from Femtoseconds to Seconds-Effect of Additives in Cobalt-and Iodide-Based Electrolytes, ChemSusChem, 8 (2015) 3118-3128. open in new tab
  33. M. Klein, R. Pankiewicz, M. Zalas, W. Stampor, Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture, Scientific Reports, 6 (2016) 30077. open in new tab
  34. MO-G Version 1.1, in, Fujitsu Limited, Tokyo, Japan, 2008. open in new tab
  35. M.J. Frish, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T.K. Vreven, K. N., J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Peterson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajama, Y. Honda, O. Kiato, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchin, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Startmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Octerski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenbeg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farks, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian03, Revision B.04, in, Gaussian, Inc., Pittsburgh, PA, 2003.
  36. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, 38 (1988) 3098-3100. open in new tab
  37. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, 98 (1993) 5648-5652. open in new tab
  38. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, 37 (1988) 785-789. open in new tab
  39. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem., 14 (1993) 1347- 1363. open in new tab
  40. M.S. Gordon, M.W. Schmidt, Chapter 41 -Advances in electronic structure theory: GAMESS a decade later A2 -Dykstra, Clifford E, in: G. Frenking, K.S. Kim, G.E. Scuseria (Eds.) Theory and Applications of Computational Chemistry, Elsevier, Amsterdam, 2005, pp. 1167-1189. open in new tab
  41. C.C.J. Roothaan, New Developments in Molecular Orbital Theory, Reviews of Modern Physics, 23 (1951) 69-89. open in new tab
  42. F. Jensen, Locating transition structures by mode following: A comparison of six methods on the Ar8 Lennard-Jones potential, The Journal of Chemical Physics, 102 (1995) 6706-6718. open in new tab
  43. H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, A long-range correction scheme for generalized-gradient-approximation exchange functionals, The Journal of Chemical Physics, 115 (2001) 3540-3544. open in new tab
  44. T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett., 393 (2004) 51-57. open in new tab
  45. E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, Journal of Computational Physics, 17 (1975) 87-94. open in new tab
  46. S. Miertuš, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chem. Phys., 55 (1981) 117-129. open in new tab
  47. V. Barone, M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, The Journal of Physical Chemistry A, 102 (1998) 1995-2001. open in new tab
  48. M. Cossi, N. Rega, G. Scalmani, V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem., 24 (2003) 669-681. open in new tab
  49. J. Tomasi, B. Mennucci, R. Cammi, Quantum Mechanical Continuum Solvation Models, Chem. Rev., 105 (2005) 2999-3094. open in new tab
  50. M. Cossi, B. Mennucci, R. Cammi, Analytical first derivatives of molecular surfaces with respect to nuclear coordinates, J. Comput. Chem., 17 (1996) 57-73. open in new tab
  51. C.A. Bruynes, T.K. Jurriens, Catalysts for silylations with 1,1,1,3,3,3- hexamethyldisilazane, The Journal of Organic Chemistry, 47 (1982) 3966-3969. open in new tab
  52. Y. Ohsawa, K.W. Hanck, M.K. DeArmond, A systematic electrochemical and spectroscopic study of mixed-ligand ruthenium(II) 2,2′-bipyridine complexes [Ru(bpy)3- open in new tab
  53. 2+ (n=0,1,2 and 3), Journal of electroanalytical chemistry and interfacial electrochemistry, 175 (1984) 229-240. open in new tab
  54. C. Hansch, A. Leo, R.W. Taft, A survey of Hammett substituent constants and resonance and field parameters, Chem. Rev., 91 (1991) 165-195. open in new tab
  55. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky, Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence, Coord. Chem. Rev., 84 (1988) 85-277. open in new tab
  56. M.K. Nazeeruddin, S.M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Acid−Base Equilibria of (2,2'- Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania, Inorg. Chem., 38 (1999) 6298- 6305. open in new tab
  57. J.V. Caspar, T.J. Meyer, Application of the energy gap law to nonradiative, excited-state decay, The Journal of Physical Chemistry, 87 (1983) 952-957. open in new tab
  58. R. Englman, J. Jortner, The energy gap law for radiationless transitions in large molecules, Mol. Phys., 18 (1970) 145-164. open in new tab
  59. W.J. Finkenzeller, H. Yersin, Emission of Ir(ppy)3. Temperature dependence, decay dynamics, and magnetic field properties, Chem. Phys. Lett., 377 (2003) 299-305. open in new tab
  60. P.R. Carlier, N. Deora, T.D. Crawford, Protonated 2-Methyl-1,2-epoxypropane: A Challenging Problem for Density Functional Theory, The Journal of Organic Chemistry, 71 (2006) 1592-1597. open in new tab
  61. K.P. Jensen, B.O. Roos, U. Ryde, Performance of density functionals for first row transition metal systems, The Journal of Chemical Physics, 126 (2007) 014103. open in new tab
  62. P. Yu, F. Zhang, M. Li, R. He, Influence of position of auxiliary acceptor in D-A-π-A photosensitizes on photovoltaic performances of dye-sensitized solar cells, Journal of Materials Science, 50 (2015) 7333-7342. open in new tab
  63. M.-W. Lee, J.-Y. Kim, H.J. Son, J.Y. Kim, B. Kim, H. Kim, D.-K. Lee, K. Kim, D.-H.
  64. Lee, M.J. Ko, Tailoring of Energy Levels in D-π-A Organic Dyes via Fluorination of Acceptor Units for Efficient Dye-Sensitized Solar Cells, Scientific Reports, 5 (2015) 7711. open in new tab
  65. F. De Angelis, S. Fantacci, A. Sgamellotti, An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires, Theor. Chem. Acc., 117 (2007) 1093-1104. open in new tab
  66. J. Baldenebro-López, J. Castorena-González, N. Flores-Holguín, J. Almaral-Sánchez, D. Glossman-Mitnik, Computational Molecular Nanoscience Study of the Properties of Copper Complexes for Dye-Sensitized Solar Cells, International Journal of Molecular Sciences, 13 (2012) 16005-16019. open in new tab
  67. B. Tripathi, P. Yadav, M. Kumar, Theoretical upper limit of short-circuit current density of TiO2 nanorod based dye-sensitized solar cell, Results in Physics, 3 (2013) 182-186. open in new tab
  68. F.M. Rajab, Effect of Solvent, Dye-Loading Time, and Dye Choice on the Performance of Dye-Sensitized Solar Cells, Journal of Nanomaterials, 2016 (2016) 8. open in new tab
  69. M. Zalas, M. Klein, The Influence of Titania Electrode Modification with Lanthanide Ions Containing Thin Layer on the Performance of Dye-Sensitized Solar Cells, International Journal of Photoenergy, 2012 (2012) 8. open in new tab
  70. K. Suto, A. Konno, Y. Kawata, S. Tasaka, A. Sugita, Adsorption dynamics of the N719 dye on nanoporous titanium oxides studied by resonance Raman scattering and Fourier transform infrared spectroscopy, Chem. Phys. Lett., 536 (2012) 45-49. open in new tab
  71. R. Cisneros, M. Beley, J.-F. Fauvarque, F. Lapicque, Investigation of electron transfer processes involved in DSSC's by wavelength dependent electrochemical impedance spectroscopy (λ-EIS), Electrochim. Acta, 171 (2015) 49-58. open in new tab
  72. S. Cai, X. Hu, J. Han, Z. Zhang, X. Li, C. Wang, J. Su, Efficient organic dyes containing dibenzo heterocycles as conjugated linker part for dye-sensitized solar cells, Tetrahedron, 69 (2013) 1970-1977. open in new tab
  73. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy, The Journal of Physical Chemistry B, 110 (2006) 13872-13880. open in new tab
  74. A.S. Hart, C.B. K. C, N.K. Subbaiyan, P.A. Karr, F. D'Souza, Phenothiazine-Sensitized Organic Solar Cells: Effect of Dye Anchor Group Positioning on the Cell Performance, ACS Applied Materials & Interfaces, 4 (2012 open in new tab
Verified by:
Gdańsk University of Technology

seen 130 times

Recommended for you

Meta Tags