The Influence of Microstructure on the Passive Layer Chemistry and Corrosion Resistance for Some Titanium-Based Alloys - Publication - Bridge of Knowledge

Search

The Influence of Microstructure on the Passive Layer Chemistry and Corrosion Resistance for Some Titanium-Based Alloys

Abstract

The effect of microstructure and chemistry on the kinetics of passive layer growth and passivity breakdown of some Ti-based alloys, namely Ti-6Al-4V, Ti-6Al-7Nb and TC21 alloys, was studied. The rate of pitting corrosion was evaluated using cyclic polarization measurements. Chronoamperometry was applied to assess the passive layer growth kinetics and breakdown. Microstructure influence on the uniform corrosion rate of these alloys was also investigated employing dynamic electrochemical impedance spectroscopy (DEIS). Corrosion studies were performed in 0.9% NaCl solution at 37 °C, and the obtained results were compared with ultrapure Ti (99.99%). The different phases of the microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Chemical composition and chemistry of the corroded surfaces were studied using X-ray photoelectron spectroscopy (XPS) analysis. For all studied alloys, the microstructure consisted of α matrix, which was strengthened by β phase. The highest and the lowest values of the β phase’s volume fraction were recorded for TC21 and Ti-Al-Nb alloys, respectively. The susceptibility of the investigated alloys toward pitting corrosion was enhanced following the sequence: Ti-6Al-7Nb < Ti-6Al-4V << TC21. Ti-6Al-7Nb alloy recorded the lowest pitting corrosion resistance (Rpit) among studied alloys, approaching that of pure Ti. The obvious changes in the microstructure of these alloys, together with XPS findings, were adopted to interpret the pronounced variation in the corrosion behavior of these materials

Citations

  • 1 7

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Authors (11)

Cite as

Full text

download paper
downloaded 60 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Materials no. 12, pages 1 - 20,
ISSN: 1996-1944
Language:
English
Publication year:
2019
Bibliographic description:
El-Bagoury N., Ahmed S., Abu Ali O., El-Hadad S., Fallatah A., Mersai G., Ibrahim M., Wysocka J., Ryl J., Boukherroub R., Amin M.: The Influence of Microstructure on the Passive Layer Chemistry and Corrosion Resistance for Some Titanium-Based Alloys// Materials. -Vol. 12, iss. 8 (2019), s.1-20
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma12081233
Bibliography: test
  1. de Assis, S.L.; Wolynec, S.; Costa, I. Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim. Acta 2006, 51, 1815-1819. [CrossRef] open in new tab
  2. Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review. Prog. Mater. Sci. 2009, 54, 397-425. [CrossRef] open in new tab
  3. Jiang, H. Enhancement of Titanium Alloy Corrosion Resistance via Anodic Oxidation Treatment. Int. J. Electrochem. Sci. 2018, 3888-3896. [CrossRef] open in new tab
  4. Moiseyev, V.N. Titanium Alloys: Russian Aircraft and Aerospace Applications; Advances in Metallic Alloys; open in new tab
  5. Taylor & Francis: Boca Raton, FL, USA, 2006; ISBN 978-0-8493-3273-9.
  6. Leyens, C.; Peters, M. (Eds.) Titanium and Titanium Alloys: Fundamentals and Applications; Wiley-VCH: Weinheim, Germany; John Wiley: Chichester, UK, 2003; ISBN 978-3-527-30534-6. open in new tab
  7. Lütjering, G.; Williams, J.C. Titanium: With 51 Tables; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-71397-5.
  8. Oberwinkler, B.; Riedler, M.; Eichlseder, W. Importance of local microstructure for damage tolerant light weight design of Ti-6Al-4V forgings. Int. J. Fatigue 2010, 32, 808-814. open in new tab
  9. Knobbe, H.; Köster, P.; Christ, H.-J.; Fritzen, C.-P.; Riedler, M. Initiation and propagation of short fatigue cracks in forged Ti6Al4V. Procedia Eng. 2010, 2, 931-940. open in new tab
  10. Fekry, A.M.; El-Sherif, R.M. Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid. Electrochim. Acta 2009, 54, 7280-7285. [CrossRef] open in new tab
  11. Whittaker, M. Titanium Alloys. Metals 2015, 5, 1437-1439. [CrossRef] open in new tab
  12. Mountford, J.A., Jr. Titanium-Properties, Advantages and Applications Solving the Corrosion Problems in Marine Service. In Proceedings of the CORROSION, Denver, CO, USA, 7-11 April 2002. open in new tab
  13. Al-Mayouf, A.; Al-Swayih, A.; Al-Mobarak, N.; Al-Jabab, A. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater. Chem. Phys. 2004, 86, 320-329. [CrossRef] open in new tab
  14. García, C.; Ceré, S.; Durán, A. Bioactive coatings deposited on titanium alloys. J. Non-Cryst. Solids 2006, 352, 3488-3495. open in new tab
  15. Sharma, A.K. Anodizing titanium for space applications. Thin Solid Film. 1992, 208, 48-54. [CrossRef] open in new tab
  16. Barjaktarević, D.R.; Cvijović-Alagić, I.L.; Dimić, I.D.; Đokić, V.R.; Rakin, M.P. Anodization of Ti-based materials for biomedical applications: A review. Metall. Mater. Eng. 2016, 22, 129-144. [CrossRef] open in new tab
  17. Qu, Q.; Wang, L.; Chen, Y.; Li, L.; He, Y.; Ding, Z. Corrosion Behavior of Titanium in Artificial Saliva by Lactic Acid. Materials 2014, 7, 5528-5542. [CrossRef] open in new tab
  18. Hines, J.A.; Lutjering, G. Propagation of microcracks at stress amplitudes below the conventional fatigue limit in Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 1999, 22, 657-665. open in new tab
  19. Sieniawski, J.; Ziaja, W.; Kubiak, K.; Motyk, M. Microstructure and Mechanical Properties of High Strength Two-Phase Titanium Alloys. In Titanium Alloys-Advances in Properties Control; open in new tab
  20. Sieniawski, J., Ed.; InTech: London, UK, 2013; ISBN 978-953-51-1110-8.
  21. Gai, X.; Bai, Y.; Li, J.; Li, S.; Hou, W.; Hao, Y.; Zhang, X.; Yang, R.; Misra, R.D.K. Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting. Corros. Sci. 2018, 145, 80-89. open in new tab
  22. Dadé, M.; Esin, V.A.; Nazé, L.; Sallot, P. Short-and long-term oxidation behaviour of an advanced Ti2AlNb alloy. Corros. Sci. 2019, 148, 379-387. [CrossRef] open in new tab
  23. Chávez-Díaz, M.; Escudero-Rincón, M.; Arce-Estrada, E.; Cabrera-Sierra, R. Effect of the Heat-Treated Ti6Al4V Alloy on the Fibroblastic Cell Response. Materials 2017, 11, 21. [CrossRef] [PubMed] open in new tab
  24. Hussein, M.; Kumar, M.; Drew, R.; Al-Aqeeli, N. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid. Materials 2017, 11, 26. [CrossRef] [PubMed] open in new tab
  25. Zhang, L.; Duan, Y.; Gao, R.; Yang, J.; Wei, K.; Tang, D.; Fu, T. The Effect of Potential on Surface Characteristic and Corrosion Resistance of Anodic Oxide Film Formed on Commercial Pure Titanium at the Potentiodynamic-Aging Mode. Materials 2019, 12, 370. [CrossRef] [PubMed] open in new tab
  26. Reda, R.; Nofal, A.; Hussein, A.-H. Effect of Single and Duplex Stage Heat Treatment on the Microstructure and Mechanical Properties of Cast Ti-6Al-4V Alloy. Metallogr. Microstruct. Anal. 2013, 2, 388-393. [CrossRef] open in new tab
  27. El-Bagoury, N.; Ibrahim, K. Microstructure, Phase Transformations and Mechanical Properties of Solution Treated Bi-Modal Titanium Alloy. Int. J. Eng. Sci. Res. Technol. 2016, 5, 517-525. open in new tab
  28. Zhao, X.; Sun, S.; Wang, L.; Liu, Y.; He, J.; Tu, G. A New Low-Cost β-Type High-Strength Titanium Alloy with Lower Alloying Percentage for Spring Applications. Mater. Trans. 2014, 55, 1455-1459. [CrossRef] open in new tab
  29. Phukaoluan, A.; Khantachawana, A.; Dechkunakorn, S.; Anuwongnukroh, N.; Santiwong, P.; Kajornchaiyakul, J. Effect of Cu and Co Additions on Corrosion Behavior of NiTi Alloys for Orthodontic Applications. Adv. Mater. Res. 2011, 378-379, 650-654. [CrossRef] open in new tab
  30. Lee, C.S.; Won, J.W.; Lee, Y.; Yeom, J.-T.; Lee, G.Y. High Temperature Deformation Behavior and Microstructure Evolution of Ti-4Al-4Fe-0.25Si Alloy. Korean J. Met. Mater. 2016, 54, 338-346. [CrossRef] open in new tab
  31. ICDD. PDF 2, Database Sets 1-45; The International Centre for Diffraction Data: Newtown Square, PA, USA, 1995.
  32. Lutterotti, L.; Scardi, P. Simultaneous structure and size-strain refinement by the Rietveld method. J. Appl. Crystallogr. 1990, 23, 246-252. [CrossRef] open in new tab
  33. Lutterotti, L. Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 334-340. [CrossRef] open in new tab
  34. Belsky, A.; Hellenbrand!, M.; Karen., V.L.; Luksch, P. New developments in the inorganic crystal structure database (ICSD): Accessibility in support of materials research and design. Acta Crystallogr. 2002, 858, 364-369. [CrossRef] open in new tab
  35. Dollase, W.A. Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Crystallogr. 1986, 19, 267-272. [CrossRef] open in new tab
  36. Will, G.; Bellotto, M.; Parrish, W.; Hart, M. Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data. J. Appl. Crystallogr. 1988, 21, 182-191. [CrossRef] open in new tab
  37. Cvijović-Alagić, I.; Cvijović, Z.; Mitrović, S.; Panić, V.; Rakin, M. Wear and corrosion behaviour of Ti-13Nb-13Zr and Ti-6Al-4V alloys in simulated physiological solution. Corros. Sci. 2011, 53, 796-808. [CrossRef] open in new tab
  38. Simsek, I.; Ozyurek, D. Investigation of the wear and corrosion behaviors of Ti5Al2.5Fe and Ti6Al4V alloys produced by mechanical alloying method in simulated body fluid environment. Mater. Sci. Eng. C 2019, 94, 357-363. [CrossRef] [PubMed] open in new tab
  39. Mansfeld, F. Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corros. Sci. 2005, 47, 3178-3186. [CrossRef] open in new tab
  40. Flitt, H.J.; Schweinsberg, D.P. A guide to polarisation curve interpretation: Deconstruction of experimental curves typical of the Fe/H2O/H+/O2 corrosion system. Corros. Sci. 2005, 47, 2125-2156. [CrossRef] open in new tab
  41. Flitt, H.J.; Schweinsberg, D.P. Evaluation of corrosion rate from polarisation curves not exhibiting a Tafel region. Corros. Sci. 2005, 47, 3034-3052. [CrossRef] open in new tab
  42. Krakowiak, S.; Darowicki, K.;Ślepski, P. Impedance of metastable pitting corrosion. J. Electroanal. Chem. 2005, 575, 33-38. [CrossRef] open in new tab
  43. Darowicki, K.; Krakowiak, S.; Slepski, P. The time dependence of pit creation impedance spectra. Electrochem. Commun. 2004, 6, 860-866. [CrossRef] open in new tab
  44. Gerengi, H.; Slepski, P.; Ozgan, E.; Kurtay, M. Investigation of corrosion behavior of 6060 and 6082 aluminum alloys under simulated acid rain conditions: Corrosion behavior of 6060 and 6082 Al alloys under acid rain. Mater. Corros. 2015, 66, 233-240. [CrossRef] open in new tab
  45. Blackwood, D. Influence of the space-charge region on electrochemical impedance measurements on passive oxide films on titanium. Electrochim. Acta 2000, 46, 563-569. [CrossRef] open in new tab
  46. Hamadou, L.; Aïnouche, L.; Kadri, A.; Yahia, S.A.A.; Benbrahim, N. Electrochemical impedance spectroscopy study of thermally grown oxides exhibiting constant phase element behaviour. Electrochim. Acta 2013, 113, 99-108. [CrossRef] open in new tab
  47. Gnedenkov, S.V.; Sinebryukhov, S.L. Electrochemical Impedance Spectroscopy of Oxide Layers on the Titanium Surface. Russ. J. Electrochem. 2005, 41, 858-865. [CrossRef] open in new tab
  48. Cámara, O.R.; Avalle, L.B.; Oliva, F.Y. Protein adsorption on titanium dioxide: Effects on double layer and semiconductor space charge region studied by EIS. Electrochim. Acta 2010, 55, 4519-4528. [CrossRef] open in new tab
  49. Jorcin, J.-B.; Orazem, M.E.; Pébère, N.; Tribollet, B. CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1473-1479. [CrossRef] open in new tab
  50. Alqarni, N.D.; Wysocka, J.; El-Bagoury, N.; Ryl, J.; Amin, M.A.; Boukherroub, R. Effect of cobalt addition on the corrosion behavior of near equiatomic NiTi shape memory alloy in normal saline solution: Electrochemical and XPS studies. RSC Adv. 2018, 8, 19289-19300. [CrossRef] open in new tab
  51. Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218-6227. [CrossRef] open in new tab
  52. Krakowiak, S.; Darowicki, K.; Slepski, P. Impedance investigation of passive 304 stainless steel in the pit pre-initiation state. Electrochim. Acta 2005, 50, 2699-2704. [CrossRef] open in new tab
  53. Dong, Z.H.; Shi, W.; Guo, X.P. Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution. Corros. Sci. 2011, 53, 1322-1330. [CrossRef] open in new tab
  54. Amin, M.A.; Hassan, H.H.; Abd El Rehim, S.S. On the role of NO2− ions in passivity breakdown of Zn in deaerated neutral sodium nitrite solutions and the effect of some inorganic inhibitors. Electrochim. Acta 2008, 53, 2600-2609. [CrossRef] open in new tab
  55. Zakeri, M.; Naghizadeh, M.; Nakhaie, D.; Moayed, M.H. Pit Transition Potential and Repassivation Potential of Stainless Steel in Thiosulfate Solution. J. Electrochem. Soc. 2016, 163, C275-C281. [CrossRef] open in new tab
  56. Amin, M.A.; Abd El-Rehim, S.S.; Aarão Reis, F.D.A.; Cole, I.S. Metastable and stable pitting events at zinc passive layer in alkaline solutions. Ionics 2014, 20, 127-136. [CrossRef] open in new tab
  57. Amin, M.A.; El-Bagoury, N.; Mahmoud, M.H.H.; Hessien, M.M.; Abd El-Rehim, S.S.; Wysocka, J.; Ryl, J. Catalytic impact of alloyed Al on the corrosion behavior of Co 50 Ni 23 Ga 26 Al 1.0 magnetic shape memory alloy and catalysis applications for efficient electrochemical H 2 generation. Rsc Adv. 2017, 7, 3635-3649. [CrossRef] open in new tab
  58. Amin, M.A.; Fadlallah, S.A.; Alosaimi, G.S. Activation of Titanium for Synthesis of Supported and Unsupported Metallic Nanoparticles. J. Electrochem. Soc. 2014, 161, D672-D680. [CrossRef] open in new tab
  59. Amin, M.A.; Abd El-Rehim, S.S.; El-Sherbini, E.E.F.; Mahmoud, S.R.; Abbas, M.N. Pitting corrosion studies on Al and Al-Zn alloys in SCN−solutions. Electrochim. Acta 2009, 54, 4288-4296. [CrossRef] open in new tab
  60. Scully, J.R. Localized Corrosion of Sputtered Aluminum and Al-0.5% Cu Alloy Thin Films in Aqueous HF Solution. J. Electrochem. Soc. 1990, 137, 1365. [CrossRef] open in new tab
  61. Pouilleau, J.; Devilliers, D.; Garrido, F.; Durand-Vidal, S.; Mahé, E. Structure and composition of passive titanium oxide films. Mater. Sci. Eng. B 1997, 47, 235-243. [CrossRef] open in new tab
  62. Milošev, I.; Kosec, T.; Strehblow, H.-H. XPS and EIS study of the passive film formed on orthopaedic Ti-6Al-7Nb alloy in Hank's physiological solution. Electrochim. Acta 2008, 53, 3547-3558. [CrossRef] open in new tab
  63. Wysocka, J.; Cieslik, M.; Krakowiak, S.; Ryl, J. Carboxylic acids as efficient corrosion inhibitors of aluminium alloys in alkaline media. Electrochim. Acta 2018, 289, 175-192. [CrossRef] open in new tab
  64. Amin, M.A.; Ahmed, E.M.; Mostafa, N.Y.; Alotibi, M.M.; Darabdhara, G.; Das, M.R.; Wysocka, J.; Ryl, J.; Abd El-Rehim, S.S. Aluminum Titania Nanoparticle Composites as Nonprecious Catalysts for Efficient Electrochemical Generation of H 2 . ACS Appl. Mater. Interfaces 2016, 8, 23655-23667. [CrossRef] open in new tab
  65. Weibin, Z.; Weidong, W.; Xueming, W.; Xinlu, C.; Dawei, Y.; Changle, S.; Liping, P.; Yuying, W.; Li, B. The investigation of NbO 2 and Nb 2 O 5 electronic structure by XPS, UPS and first principles methods: The investigation of NbO 2 and Nb 2 O 5 electronic structure. Surf. Interface Anal. 2013, 45, 1206-1210. [CrossRef] open in new tab
  66. Kharitonov, D.S.; Sommertune, J.; Örnek, C.; Ryl, J.; Kurilo, I.I.; Claesson, P.M.; Pan, J. Corrosion inhibition of aluminium alloy AA6063-T5 by vanadates: Local surface chemical events elucidated by confocal Raman micro-spectroscopy. Corros. Sci. 2019, 148, 237-250. [CrossRef] open in new tab
  67. Kumar, S.; Kumar, S.; Tiwari, S.; Srivastava, S.; Srivastava, M.; Yadav, B.K.; Kumar, S.; Tran, T.T.; Dewan, A.K.; Mulchandani, A.; et al. Biofunctionalized Nanostructured Zirconia for Biomedical Application: A Smart Approach for Oral Cancer Detection. Adv. Sci. 2015, 2, 1500048. [CrossRef] [PubMed] open in new tab
  68. Siuzdak, K.; Szkoda, M.; Karczewski, J.; Ryl, J.; Darowicki, K.; Grochowska, K. Fabrication and Significant Photoelectrochemical Activity of Titania Nanotubes Modified with Thin Indium Tin Oxide Film. Acta Metall. Sin. (Engl. Lett.) 2017, 30, 1210-1220. [CrossRef] open in new tab
  69. Mandrino, D.; Godec, M.; Torkar, M.; Jenko, M. Study of oxide protective layers on stainless steel by AES, EDS and XPS. Surf. Interface Anal. 2008, 40, 285-289. [CrossRef] Materials 2019, 12, 1233 20 of 20 open in new tab
  70. Wang, C.; Irfan, I.; Liu, X.; Gao, Y. Role of molybdenum oxide for organic electronics: Surface analytical studies. J. Vac. Sci. Technol. Bnanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2014, 32, 040801. [CrossRef] open in new tab
  71. Liu, J.; Alfantazi, A.; Asselin, E. Effects of Temperature and Sulfate on the Pitting Corrosion of Titanium in High-Temperature Chloride Solutions. J. Electrochem. Soc. 2015, 162, C189-C196. [CrossRef] open in new tab
  72. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 122 times

Recommended for you

Meta Tags