The Influence of the Depth of Cut in Single-Pass Grinding on the Microstructure and Properties of the C45 Steel Surface Layer - Publication - MOST Wiedzy


The Influence of the Depth of Cut in Single-Pass Grinding on the Microstructure and Properties of the C45 Steel Surface Layer


The paper contains the results of a metallographic examination and nanoindentation test conducted for the medium carbon structural steel with low content of Mn, Si, Cu, Cr, and Ni after its grinding to a depth ranging from 2 μm to 20 μm, at constant cutting speed (peripheral speed) of vs = 25 ms−1 and constant feed rate of vft = 1 m/min. Applied grinding parameters did not cause the surface layer hardening, which could generate an unfavorable stress distribution. The increase in the surface hardness was obtained due to the work hardening effect. Microstructure, phase composition, and chemical composition of the grinded surface layer were examined using an X‐ray diffractometer, light microscope, and scanning microscope equipped with X‐ray energy‐dispersive spectroscopy, respectively. Hardness on the grinded surface and on the cross‐section was also determined. It was shown that the grinding of C45 steel causes work hardening of its surface layer without phase transformation. What is more, only grinding to a depth of 20 μm caused the formation of an oxide scale on the work‐hardened surface layer. Nanoindentation test on the cross‐ section, at a short distance from the grinded surface, has shown that ferrite grains were more susceptible to work hardening than pearlite grains due to the creation of an equiaxed cellular microstructure, and that different dislocation substructure was created in the work‐hardened surface layer after grinding to different depths.


  • 0


  • 0

    Web of Science

  • 0



artykuły w czasopismach
Published in:
Materials no. 13, pages 1 - 17,
ISSN: 1996-1944
Publication year:
Bibliographic description:
Szkodo M., Chodnicka-Wszelak K., Deja M., Stanisławska A., Bartmański M.: The Influence of the Depth of Cut in Single-Pass Grinding on the Microstructure and Properties of the C45 Steel Surface Layer// Materials -Vol. 13,iss. 5 (2020), s.1-17
Digital Object Identifier (open in new tab) 10.3390/ma13051040
Bibliography: test
  1. Ullah, A.S.; Caggiano, A.; Kubo, A.; Chowdhury, M.A.K. Elucidating Grinding Mechanism by Theoretical and Experimental Investigations. Materials 2018, 11, 274. open in new tab
  2. Bardin, J.A.; Eisen, E.A.; Tolbert, P.E.; Hallock, M.F.; Hammond, S.K.; Woskie, S.R.; Smith, T.J.; Monson, R.R. Mortality studies of machining fluid exposure in the automobile industry. V: A case-control study of pancreatic cancer. Am. J. Ind. Med. 1997, 32, 240-247. open in new tab
  3. Dzionk, S.; Ścibiorski, B.; Przybylski, W. Surface Texture Analysis of Hardened Shafts after Ceramic Ball Burnishing. Materials 2019, 12, 204. open in new tab
  4. Jerez-Mesa, R.; Landon, Y.; Travieso-Rodriguez, J.A.; Dessein, G.; Llumà, J.; Wagner, V. Topological surface integrity modification of AISI 1038 alloy after vibration-assisted ball burnishing. Surf. Coatings Technol. 2018, 349, 364-377. open in new tab
  5. Korzynski, M.; Dudek, K.; Kruczek, B.; Kocurek, P. Equilibrium surface texture of valve stems and burnishing method to obtain it. Tribol. Int. 2018, 124, 195-199. open in new tab
  6. Shiou, F.-J.; Chen, C.-H. Freeform surface finish of plastic injection mold by using ball-burnishing process. J. Mater. Process. Technol. 2003, 140, 248-254. open in new tab
  7. Alonso, U.; Ortega, N.; Sanchez, J.A.; Pombo, I.; Izquierdo, B.; Plaza, S. Hardness control of grind- hardening and finishing grinding by means of area-based specific energy. Int. J. Mach. Tools Manuf. 2015, 88, 24-33. open in new tab
  8. Uhlmann, E.; Lypovka, P.; Hochschild, L.; Schröer, N. Influence of rail grinding process parameters on rail surface roughness and surface layer hardness. Wear 2016, 366-367, 287-293. open in new tab
  9. Foeckerer, T.; Zaeh, M.; Zhang, O. A three-dimensional analytical model to predict the thermo- metallurgical effects within the surface layer during grinding and grind-hardening. Int. J. Heat Mass Transf. 2013, 56, 223-237. open in new tab
  10. Baumgart, C.; Heizer, V.; Wegener, K. In-process workpiece based temperature measurement in cylindrical grinding. Procedia CIRP 2018, 77, 42-45. open in new tab
  11. Mohamed, A.-M.O.; Warkentin, A.; Bauer, R. Use of surface roughness measurements to improve the estimation of the heat partition in grinding. J. Mater. Process. Technol. 2011, 211, 566-572. open in new tab
  12. Salonitis, K.; Chryssolouris, G. Thermal analysis of grind-hardening process. Int. J. Manuf. Technol. Manag. 2007, 12, 72. open in new tab
  13. Salonitis, K.; Stavropoulos, P.; Kolios, A. External grind-hardening forces modelling and experimentation. Int. J. Adv. Manuf. Technol. 2013, 70, 523-530. open in new tab
  14. Deja, M.; Stanisławska, A.; Szkodo, M.; Wszelak, K. Forming the surface layer properties during grinding. Mechanik 2019, 10, 661-663. open in new tab
  15. Alberro, A.N.; Rojas, H.A.G.; Egea, A.J.S.; Hameed, S.; Aguilar, R.M.P. Model Based on an Effective Material-Removal Rate to Evaluate Specific Energy Consumption in Grinding. Materials 2019, 12, 939.
  16. Khan, A.M.; Jamil, M.; Mia, M.; Pimenov, D.Y.; Gasiyarov, V.; Gupta, M.K.; He, N. Multi-Objective Optimization for Grinding of AISI D2 Steel with Al2O3 Wheel under MQL. Materials 2018, 11, 2269. open in new tab
  17. Kruszyński, B.W.; Wójcik, R. Residual stress in grinding. J. Mater. Process. Technol. 2001, 109, 254-257. open in new tab
  18. Rasmussen, C.J.; Faester, S.; Dhar, S.; Quaade, J.V.; Bini, M.; Danielsen, H.K. Surface crack formation on rails at grinding induced martensite white etching layers. Wear 2017, 384-385, 8-14. open in new tab
  19. Zhou, N.; Peng, R.L.; Schönning, M.; Pettersson, R. SCC of 2304 Duplex Stainless Steel-Microstructure, Residual Stress and Surface Grinding Effects. Materials 2017, 10, 221. open in new tab
  20. Heinzel, C.; Bleil, N. The Use of the Size Effect in Grinding for Work-hardening. CIRP Ann. 2007, 56, 327- 330. open in new tab
  21. Ehle, L.; Kohls, E.; Richter, S.; Spille, J.; Schwedt, A.; Mayer, J. Grind hardening: Correlations between surface modifications and applied internal loads. Procedia CIRP 2018, 71, 341-347. open in new tab
  22. Mughrabi, H. On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity. Mater. Sci. Eng. A 2001, 317, 171-180. open in new tab
  23. Mughrabi, H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Met. 1983, 31, 1367-1379. open in new tab
  24. Deja, M.; Stanisławska, A.; Szkodo, M.; Wszelak, K. Influence of parameters of deep grinding on nanohardness and surface roughness of C45 steel. Mechanik 2018, 91, 1026-1028. open in new tab
  25. Khowash, P.K.; Ellis, D.E. Defect structure in transition-metal monoxides. Phys. Rev. B 1989, 39, 1908-1913. open in new tab
  26. Kim, H.-J.; Park, J.-H.; Vescovo, E. Oxidation of the Fe (110) surface: An Fe3O4(111)/Fe(110) bilayer. Phys. Rev. B 2000, 61, 15284-15287. open in new tab
  27. Genève, D.; Rouxel, D.; Pigeat, P.; Weber, B.; Confente, M. Surface composition modification of high-carbon low-alloy steels oxidized at high temperature in air. Appl. Surf. Sci. 2008, 254, 5348-5358. open in new tab
  28. Chang, Y.N.; I Wei, F. High temperature oxidation of low alloy steels. J. Mater. Sci. 1989, 24, 14-22. open in new tab
  29. Rao, V.S. High temperature oxidation behaviour of Fe-Al-C alloys: an overview. Mater. Sci. Eng. A 2004, 364, 232-239. open in new tab
  30. Darken, L.S.; Gurry, R.W. The System Iron-Oxygen. II. Equilibrium and Thermodynamics of Liquid Oxide and Other Phases. J. Am. Chem. Soc. 1946, 68, 798-816. open in new tab
  31. Takeda, M.; Onishi, T.; Nakakubo, S.; Fujimoto, S. Physical Properties of Iron-Oxide Scales on Si-Containing Steels at High Temperature. Mater. Trans. 2009, 50, 2242-2246. open in new tab
  32. Deng, G.; Tieu, A.; Su, L.; Zhu, H.; Zhu, Q.; Zamri, W.; Kong, C. Characterizing deformation behaviour of an oxidized high speed steel: Effects of nanoindentation depth, friction and oxide scale porosity. Int. J. Mech. Sci. 2019, 155, 267-285. open in new tab
  33. Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411-425. open in new tab
  34. Wang, Y.; Raabe, D.; Klüber, C.; Roters, F. Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 2004, 52, 2229-2238. open in new tab
  35. Dao, M.; Chollacoop, N.; Van Vliet, K.; Venkatesh, T.; Suresh, S. Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 2001, 49, 3899-3918. open in new tab
  36. Durst, K.; Backes, B.; Franke, O.; Göken, M. Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 2006, 54, 2547-2555. open in new tab
  37. Pharr, G.; Oliver, W.; Brotzen, F. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 1992, 7, 613-617. open in new tab
  38. Alcalá, J.; Barone, A.; Anglada, M. The influence of plastic hardening on surface deformation modes around Vickers and spherical indents. Acta Mater. 2000, 48, 3451-3464. open in new tab
  39. Qiu, X.; Huang, Y.; Nix, W.; Hwang, K.; Gao, H. Effect of intrinsic lattice resistance in strain gradient plasticity. Acta Mater. 2001, 49, 3949-3958. open in new tab
Sources of funding:
  • Działalność statusowa
Verified by:
Gdańsk University of Technology

seen 33 times

Recommended for you

Meta Tags