Thermal, electrical, and magnetic properties of Fe2O3–PbO–SiO2 glass prepared by traditional melt-quenching and twin roller fast-cooling methods - Publication - Bridge of Knowledge

Search

Thermal, electrical, and magnetic properties of Fe2O3–PbO–SiO2 glass prepared by traditional melt-quenching and twin roller fast-cooling methods

Abstract

In this study, Fe–Pb–Si oxide glasses containing between 12.5 and 17.5 mol% Fe2O3 were prepared using two different methods comprising traditional melt-quenching and twin roller fast-cooling techniques. The topography and structure of the materials obtained were characterized by X-ray powder diffraction and scanning electron microscopy. All of the materials were found to be amorphous. The topography of most of the glasses comprised random or evenly distributed nanostructures, where the size and amount were dependent on the iron content and preparation technique. The thermal properties of the glasses were analyzed by differential scanning calorimetry, which showed that the glass transition temperatures varied between 529 °C and 552 °C. The electric conductivity and magnetic susceptibility of the glasses were analyzed by impedance spectroscopy and with an alternating current magnetic properties measurement system, respectively. The measurements of the electrical properties indicated a relatively low activation energy for direct current conductivity (∼0.5–0.68 eV), which is typical of the polaron hopping mechanism. All of the materials exhibited magnetic hysteresis loops and they were ferromagnetic.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 81 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS no. 135,
ISSN: 0022-3697
Language:
English
Publication year:
2019
Bibliographic description:
Lenarciak A., Wójcik N. A., Kupracz P., Strychalska-Nowak J., Sobczak Z., Prześniak-Welenc M., Karczewski J., Barczyński R. J.: Thermal, electrical, and magnetic properties of Fe2O3–PbO–SiO2 glass prepared by traditional melt-quenching and twin roller fast-cooling methods// JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS. -Vol. 135, (2019), s.109010-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jpcs.2019.05.007
Bibliography: test
  1. I. Ardelean, G. Ilonca, M. Peteanu, D. Pop, Magnetic properties of xMnO(1-x) open in new tab
  2. PbO] glasses, Solid State Communications 3 (1980) 653-655.
  3. C. H. Perry, D. L. Kinser, L. K. Wilson, J. G. Vaughn, Magnetic exchange between open in new tab
  4. Ti 3+ ions in titanium phosphate glass, Journal of Applied Physics 50 (1979) 1601- 1603. open in new tab
  5. E. J. Freibele, N. C. Koon, Magnetization studies of amorphous antiferromagnetism in manganase phosphate glass, Solid State Communications 14 (1974) 1247-1250. open in new tab
  6. E. J. Freibele, N. C. Koon, L. K. Wilson, D. L. Kinser, Magnetic properties of an amorphous antiferromagnet, Journal of the American Ceramic Society 57 (1974) 237. open in new tab
  7. R. J. Barczyński, N. A. Szreder, J. Karczewski, M. Gazda, Electronic conductivity in the SiO 2 -PbO-Fe 2 O 3 glass containing magnetic nanostructures, Solid State Ionics 262 (2014) 801-805. open in new tab
  8. D. Yousefi, M. Tavoosi, A. Ghasemi, Magnetic properties of B 2 O 3 -SiO 2 -BaO- open in new tab
  9. Fe 2 O 3 glass-ceramics, Journal of Non-Crystalline Solids 443 (2016) 1-7. open in new tab
  10. O. H. El-Bayoumi, R. K. MacCrone, Dielectric behavior of lead-silicate glasses containing iron, Journal of the American Ceramic Society 59 (1976) (9-10) 386-392. open in new tab
  11. D. W. Moon, J. M. Aitken, R. K. MacCrone, Magnetic properties and structure of xFe 2 O 3 (1-x)[BaO-4B 2 O 3 ] glasses, Physics and Chemistry of Glasses 16 (1975) (5) 91-102.
  12. K. J. Kim, M. P. Maley, R. K. MacCrone, in: R. A. Levy, Hasegawa (Eds.), Electronic conductivity in the SiO 2 -PbO-Fe 2 O 3 glass containing magnetic nanostructures, Plenum Press, New York, Amorphous Magnetism Vol. II (1977) 627. open in new tab
  13. S. K. Mendiratta, M. A. Valente, J. A. Perenboom, Magnetization behaviour of Gd lead borate and Fe lead borate glasses under high magnetic field 20 T, Journal of Non-Crystalline Solids 134 (1990) 100-106. open in new tab
  14. L. Murawski, Review Electrical conductivity in iron-containing oxide glasses, Journal of Materials Science 17 (1982) 2155-2163. open in new tab
  15. L. Živanov, M. Damnjanović, N. Blaž, A. Marić, M. Kisić, G. Radosavljević, Soft ferrite applications, Magnetic, Ferroelectric, and Multiferroic Metal Oxides (2018) 387-409, doi:10.1016/B978-0-12-811180-2.00019-0. open in new tab
  16. L. Murawski, R. J. Barczyński, Dielectric properties of transition metal oxide glasses, Journal of Non-Crystalline Solids 185 (1995) 84-93. open in new tab
  17. N. F. Mott, Conduction in glasses containing transition metal ions, Journal of Non-Crystalline Solids 1 (1968) 1-17. open in new tab
  18. R. S. Elliot, AC conduction in amorphous chalcogenide and pnictide semiconductors, Advances in Physics 36 (2) (1987) 135-218. open in new tab
  19. R. A. Anderson, R. K. MacCrone, Electronic relaxation in the PbO-SiO 2 -Fe 2 O 3 glass system, Journal of Non-Crystalline Solids 14 (1974) 112-130. open in new tab
  20. A. Amzil, R. Castanet, Thermodynamic Investigation of the Pt-Pb binary alloys, Berichte der Bunsengesellschaft für physikalische Chemie 96 (12) (1992) 1872- 1876, doi:10.1002/bbpc.19920961217. open in new tab
  21. M. Fahmy, M. J. Park, M. Tomozawa, R. K. MacCrone, Magnetic properties, microstructure, and ultrastructure of partially crystallized B2O3-BAO-FE2O3 glass, Phys. Chem. Glasses 13 (1972) 2.
  22. E. Morin, J. Wu, J. Stebbins, Modifier cation (Ba, Ca, La, Y) field strength effects on aluminum and boron coordination in aluminoborosilicate glasses: the roles of fictive temperature and boron content, Applied Physics A 116 (2014) 479-490, 10.1007/s00339-014-8369-4. open in new tab
  23. C. Le Losq, D. R. Neuville, P. Florian, G. S. Henderson, D. Massiot, The role of
  24. Al 3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts, Geochimica Cosmochimica Acta 126 (2014) 495-517, doi:10.1016/j.gca.2013.11.010. open in new tab
  25. L. M. Thompson, J. F. Stebbins, Non-stoichiometric non-bridging oxygens and five-coordinated aluminum in alkaline earth aluminosilicate glasses: Effect of modifier cation size, Journal of Non-Crystalline Solids 358 (2012) 1783-1789, doi:10.1016/j.jnoncrysol.2012.05.022. open in new tab
  26. V. Simon, D. Muresan, A. Takacs, M. Neumann, S. Simon, Local order changes induced in calcium-sodium-phosphate glasses by transition metals, Solid State Ionics 178 (2007) 221-225, doi:10.1016/j.ssi.2006.12.011. open in new tab
  27. S. G. Griffin, R. G. Hill, Influence of glass composition on the properties of glass polyalkenoate cements. Part II: influence of phosphate content, Biomaterials 21 (2000) 399-403. open in new tab
  28. R. Parmar, R. S. Kundu, R. Punia, P. Aghamkar, N. Kishore, Effect of Fe 2 O 3 on the physical and structural properties of bismuth silicate glasses, AIP Conf. Proc. 1536, 653 (2013), doi:10.1063/1.4810396. open in new tab
  29. D. Aboutaleb, B. Safi, Structure and properties of the soda-borate glasses: effect of adding Fe 2 O 3 concentration, Journal of Chemical Engineering Process Technology 2016, 7:1, doi:10.4172/2157-7048.1000268. open in new tab
  30. A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectrics Press London open in new tab
  31. J. Schnakenberg, Polaronic impurity hopping conduction, Phys. State. Solids 28, 623 (1968). open in new tab
  32. M. Ahmadzadeh, J. Marcial, J. McCloy, Crystallization of iron-containing sodium aluminosilicate glasses in the NaAlSiO 4 -NaFeSiO 4 join, Journal of Geophysical Research: Solid Earth 122 (2017) 2504-2524, doi:10.1002/2016JB013661. open in new tab
  33. A. P. Ramirez, Strongly geometrically frustrated magnets, Annual Review of Materials Science 24 (1994) 453-480, doi:10.1146/annurev.ms.24.080194.002321. open in new tab
  34. H. El. Moussaoui, T. Mahfoud, S. Habouti, K. El. Maalam, M. Ben Ali, open in new tab
  35. M. Hamedoun, O. Mounkachi, R. Masrour, E. K. Hlil, A. Benyoussef, Synthesis and magnetic properties of tin spinel ferrites doped manganese, Journal of Magnetism and Magnetic Materials 405 (2016) 181-186, doi:10.1016/j.jmmm.2015.12.059. open in new tab
  36. O. Mounkachi, M. Hamedoun, M. Belaiche, A. Benyoussef, R. Masrour, H. El. open in new tab
  37. Moussaoui, M. Sajieddine, Synthesis and magnetic properties of ferrites spinels
  38. Mg x Cu 1-x Fe 2 O 4 , Physica B 407 (1) (2012) 27-32, doi:10.1016/j.physb.2011.09.023. open in new tab
  39. M. Ben Ali, K. El. Maalam, H. El. Moussaoui, O. Mounkachi, M. Hamedoun, R.
  40. Masrour, E. K. Hlil, A. Benyoussef, Effect of zinc concentration on the structural and magnetic properties of mixed Co-Zn ferrites nanoparticles synthesized by sol/gel method, Journal of Magnetism and Magnetic Materials 398 (2016) 20-25, doi:10.1016/j.jmmm.2015.08.097. open in new tab
  41. R. Masrour, E. K. Hlil, S. Obbade, C. Rossignol, Theoretical and experimental investigations of the structural, magnetic, electronic, and electrical properties of olivine LiFePO 4 , Solid State Ionics 289 (2016) 214-219, doi:10.1016/j.ssi.2016.03.016. open in new tab
  42. O. Mounkachi, H. El Moussaoui, R. Masrour, J. Ilali, K. El. Mediouri, M. Hamedoun, E.K. Hlil, A. El Kenzb, A. Benyoussef, High freezing temperature in open in new tab
  43. SnO 2 based diluted magnetic semiconductor, Materials Letters 126 (2014) 193-196, doi:10.1016/j.matlet.2014.04.064. open in new tab
  44. R. Masrour, A. Jabar, H. Khlif, F. Ben Jemaa, M. Ellouze, E. K. Hlil, Experiment, mean field theory and Monte Carlo simulations of the magnetocaloric effect in doi:10.1016/j.ssc.2017.10.003. open in new tab
  45. K. El Maalam, M. Ben Ali, H. El Moussaoui, O. Mounkachi, M. Hamedoun, R.
  46. Masrour, E. K. Hlil, A. Benyoussef, Magnetic properties of tin ferrites nanostructures doped with transition metal, Journal of Alloys and Compounds 622 (2015) 761-764, doi:10.1016/j.jallcom.2014.10.152. open in new tab
  47. H. El Moussaoui, O. Mounkachi, R. Masrour, M. Hamedoun, E. K. Hlil, A. Benyoussef, Synthesis and super-paramagnetic properties of neodymium ferrites nanorods, Journal of Alloys and Compounds 581 (2013) 776-781, doi:10.1016/j.jallcom.2013.07.139. open in new tab
  48. H. El Moussaou, T. Mahfoud, M. Ben Ali, Z. Mahhouti, R. Masrour, open in new tab
  49. M. Hamedoun, E. K. Hlil, A. Benyoussef, Experimental studies of neodymium ferrites doped with three different transition metals, Materials Letters 171 (2016) 142-145, doi:10.1016/j.matlet.2016.02.072. open in new tab
  50. O. Mounkachi, E. Salmani, H. El Moussaoui, R. Masrour, M. Hamedoun, H. Ez- Zahraouy, E. K. Hlil, A. Benyoussef, High blocking temperature in SnO 2 based super- paramagnetic diluted magnetic semiconductor, Journal of Alloys and Compounds 614 (2014) 401-407, doi:10.1016/j.jallcom.2014.06.028. open in new tab
  51. M. Ben Ali, O. Mounkachi, K. El Maalam, H. El Moussaoui,
  52. M. Hamedoun, E. K. Hlil, D. Fruchart, R. Masrour, A. Benyoussef, Coexistence of blocked, metamagnetic and canted ferrimagnetic phases at high temperature in Co- Nd ferrite nanorods, Superlattices and Microstructures 84 (2015) 165-169, doi:10.1016/j.spmi.2015.05.002. open in new tab
  53. R. Masrour, M. Hamedoun, A. Benyoussef, E. K. Hlil, Magnetic properties of mixed Ni-Cu ferrites calculated using mean field approach, Journal of Magnetism and Magnetic Materials 363 (2014) 1-5, doi:10.1016/j.jmmm.2014.03.043. open in new tab
  54. R. Masrour, M. Hamedoun, A. Benyoussef, The magnetic properties of oxide spinel Li 0.5 Fe 2.5-2x Al x Cr x O 4 solid solutions, Physica B 407 (7) (2012) 1161-1165, doi:10.1016/j.physb.2012.01.106. open in new tab
Verified by:
Gdańsk University of Technology

seen 134 times

Recommended for you

Meta Tags