Transport of Particles in Intestinal Mucus under Simulated Infant and Adult Physiological Conditions: Impact of Mucus Structure and Extracellular DNA - Publication - Bridge of Knowledge

Search

Transport of Particles in Intestinal Mucus under Simulated Infant and Adult Physiological Conditions: Impact of Mucus Structure and Extracellular DNA

Abstract

The final boundary between digested food and the cells that take up nutrients in the small intestine is a protective layer of mucus. In this work, the microstructural organization and permeability of the intestinal mucus have been determined under conditions simulating those of infant and adult human small intestines. As a model, we used the mucus from the proximal (jejunal) small intestines of piglets and adult pigs. Confocal microscopy of both unfixed and fixed mucosal tissue showed mucus lining the entire jejunal epithelium. The mucus contained DNA from shed epithelial cells at different stages of degradation, with higher amounts of DNA found in the adult pig. The pig mucus comprised a coherent network of mucin and DNA with higher viscosity than the more heterogeneous piglet mucus, which resulted in increased permeability of the latter to 500-nm and 1-µm latex beads. Multiple-particle tracking experiments revealed that diffusion of the probe particles was considerably enhanced after treating mucus with DNase. The fraction of diffusive 500-nm probe particles increased in the pig mucus from 0.6% to 64% and in the piglet mucus from ca. 30% to 77% after the treatment. This suggests that extracellular DNA can significantly contribute to the microrheology and barrier properties of the intestinal mucus layer. To our knowledge, this is the first time that the structure and permeability of the small intestinal mucus have been compared between different age groups and the contribution of extracellular DNA highlighted. The results help to define rules governing colloidal transport in the developing small intestine. These are required for engineering orally administered pharmaceutical preparations with improved delivery, as well as for fabricating novel foods with enhanced nutritional quality or for controlled calorie uptake.

Citations

  • 7 0

    CrossRef

  • 0

    Web of Science

  • 7 1

    Scopus

Authors (6)

  • Photo of dr hab. inż. Adam Macierzanka

    Adam Macierzanka dr hab. inż.

    • Norwich Research Park
  • Photo of  Alan Mackie

    Alan Mackie

  • Photo of  Balazs Bajka

    Balazs Bajka

  • Photo of  Neil Rigby

    Neil Rigby

  • Photo of  Françoise Nau

    Françoise Nau

  • Photo of  Didier Dupont

    Didier Dupont

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PLOS ONE no. 9, edition 4, pages 1 - 11,
ISSN: 1932-6203
Language:
English
Publication year:
2014
Bibliographic description:
Macierzanka A., Mackie A., Bajka B., Rigby N., Nau F., Dupont D.: Transport of Particles in Intestinal Mucus under Simulated Infant and Adult Physiological Conditions: Impact of Mucus Structure and Extracellular DNA// PLOS ONE. -Vol. 9, iss. 4 (2014), s.1-11
DOI:
Digital Object Identifier (open in new tab) 10.1371/journal.pone.0095274
Verified by:
Gdańsk University of Technology

seen 69 times

Recommended for you

Meta Tags