Tuning of eg electron occupancy of MnCo2O4 spinel for oxygen evolution reaction by partial substitution of Co by Fe at octahedral sites
Abstract
To study the effect of partial Co substitution by Fe in the B site of MnCo2O4 spinel on its physicochemical and electrochemical properties, a series of MnCo2-xFexO4 powders (x=0.125; 0.250; 0.500; 0.750; 1.000) were synthesized by means of the sol-gel method. The produced powders were characterized by powder X ray diffraction (pXRD), scanning and transmission electron microscopy (SEM & TEM) coupled with energy dispersive spectroscopy (EDS), X ray photoelectron and absorption spectroscopy (XPS & XAS), Fourier transformed infrared spectroscopy (FTIR), and inductively coupled plasma optical emission spectroscopy (ICP OES). The electrocatalytic activity towards oxygen evolution reaction (OER) was evaluated in an alkaline environment (0.1 M KOH). From our findings, the activity increased with the addition of Fe up to x = 0.5, characterized by a decrease of overpotential at 10 mA cm-2GEO from 406 mV for MnCo2O4 to 376 mV for MnCo1.5Fe0.5O4, with a corresponding 44 mV dec 1 Tafel slope. It was identified that the OER-specific activity exhibits a volcano-type shape as a function of the eg occupancy at octahedral sites tuned by Co substitution with Fe.
Citations
-
1 0
CrossRef
-
0
Web of Science
-
9
Scopus
Authors (11)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
no. 48,
pages 8854 - 8866,
ISSN: 0360-3199 - Language:
- English
- Publication year:
- 2023
- Bibliographic description:
- Lankauf K., Górnicka K., Błaszczak P., Karczewski J., Ryl J., Cempura G., Zając M., Bik M., Sitarz M., Jasiński P., Molin S.: Tuning of eg electron occupancy of MnCo2O4 spinel for oxygen evolution reaction by partial substitution of Co by Fe at octahedral sites// INTERNATIONAL JOURNAL OF HYDROGEN ENERGY -Vol. 48,iss. 24 (2023), s.8854-8866
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.ijhydene.2022.12.013
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 155 times
Recommended for you
Combined effect of nitrogen-doped carbon and NiCo2O4 for electrochemical water splitting
- L. Kubińska,
- M. Szkoda,
- M. Skorupska
- + 4 authors
Investigating BiMeVOx compounds as potential photoelectrochemical and electrochemical materials for renewable hydrogen production
- M. Szkoda,
- M. Skorupska,
- P. Grabowska
- + 2 authors
Exfoliated graphite with spinel oxide as an effective hybrid electrocatalyst for water splitting
- M. Skorupska,
- K. Kowalska,
- M. Tyc
- + 3 authors