Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids - Publication - Bridge of Knowledge

Search

Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids

Abstract

For two- and three-dimensional elastic structures made of families of flexible elastic fibers undergoing finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the Cosserat curve beam model, we get 2D and 3D semi-discrete models. These models consist of systems of ordinary differential equations describing the statics of a collection of fibers with certain geometrical constraints. Using a specific homogenization technique, we introduce two- and three-dimensional equivalent continuum models which correspond to the six-parameter shell model and the micropolar continuum, respectively. We call two models equivalent if their approximations coincide with each other up to certain accuracy. The two- and three-dimensional constitutive equations of the networks are derived and discussed within the micropolar continua theory.

Citations

  • 2 9

    CrossRef

  • 0

    Web of Science

  • 2 8

    Scopus

Cite as

Full text

download paper
downloaded 37 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ACTA MECHANICA pages 1 - 13,
ISSN: 0001-5970
Language:
English
Publication year:
2019
Bibliographic description:
Eremeev V.: Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids// ACTA MECHANICA -, (2019), s.1-13
DOI:
Digital Object Identifier (open in new tab) 10.1007/s00707-019-02527-3
Bibliography: test
  1. Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Springer, New York (2005) open in new tab
  2. Arora, A., Kumar, A., Steinmann, P.: A computational approach to obtain nonlinearly elastic constitutive relations of special Cosserat rods. Comput. Methods Appl. Mech. Eng. 350, 295-314 (2019) open in new tab
  3. Ashby, M.F.: The properties of foams and lattices. Phil. Trans. R. Soc. A. 364(1838), 15-30 (2006) open in new tab
  4. Beckh, M.: Hyperbolic Structures: Shukhov's Lattice Towers-Forerunners of Modern Lightweight Construction. Wiley, Chichester (2015) open in new tab
  5. Belyaev, A.K., Eliseev, V.V.: Flexible rod model for the rotation of a drill string in an arbitrary borehole. Acta Mech. 229(2), 841-848 (2018) open in new tab
  6. Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74(4), 741-753 (2007) open in new tab
  7. Bîrsan, M., Altenbach, H., Sadowski, T., Eremeyev, V.A., Pietras, D.: Deformation analysis of functionally graded beams by the direct approach. Compos. Part B Eng. 43(3), 1315-1328 (2012) open in new tab
  8. Burzyński, S., Chróścielewski, J., Daszkiewicz, K., Witkowski, W.: Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. Compos. Part B Eng. 107, 203-213 (2016) open in new tab
  9. Burzynski, S., Chróscielewski, J., Daszkiewicz, K., Witkowski, W.: Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type. Compos. Part B Eng. 154, 478-491 (2018) open in new tab
  10. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mech. Thermodyn. 28(1-2), 139-156 (2016) open in new tab
  11. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids 21(5), 562-577 (2016) open in new tab
  12. Chesnais, C., Boutin, C., Hans, S.: Effects of the local resonance in bending on the longitudinal vibrations of reticulated beams. Wave Motion 57, 1-22 (2015) open in new tab
  13. Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statyka i dynamika powłok wielopłatowych: Nieliniowa teoria i metoda elementów skończonych (in Polish). Biblioteka Mechaniki Stosowanej, Wydawnictwo IPPT PAN (2004)
  14. Chróścielewski, J., Schmidt, R., Eremeyev, V.A.: Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches. Continuum Mech. Thermodyn. 31(1), 147-188 (2019) open in new tab
  15. De Silva, C.N., Whitman, A.B.: Thermodynamical theory of directed curves. J. Math. Phys. 12(8), 1603-1609 (1971) open in new tab
  16. dell'Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113-125 (2015) open in new tab
  17. dell'Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015) open in new tab
  18. Dos Reis, F., Ganghoffer, J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112, 354-363 (2012)
  19. El Nady, K., Dos Reis, F., Ganghoffer, J.F.: Computation of the homogenized nonlinear elastic response of 2D and 3D auxetic structures based on micropolar continuum models. Compos. Struct. 170, 271-290 (2017) open in new tab
  20. Eliseev, V., Vetyukov, Y.: Effects of deformation in the dynamics of belt drive. Acta Mech. 223(8), 1657-1667 (2012) open in new tab
  21. Eliseev, V.V.: Constitutive equations for elastic prismatic bars. Mech. Solids 24, 66-71 (1989)
  22. Eliseev, V.V.: Mechanics of Elastic Bodies. Politekhnical University, St. Petersburg (1996). (in Russian)
  23. Eremeyev, V.A.: On characterization of an elastic network within six-parameter shell theory. In: Pietraszkiewicz, W., Witkowski, W. (eds.) Shell Structures: Theory and Applications, vol. 4, pp. 89-92. Taylor & Francis Group, London (2018) open in new tab
  24. Eremeyev, V.A., Altenbach, H.: Basics of mechanics of micropolar shells. In: Altenbach, H., Eremeyev, V.A. (eds.) Shell-Like Structures: Advanced Theories and Applications, pp. 63-111. Springer, Cham (2017) open in new tab
  25. Eremeyev, V.A., Cloud, M.J., Lebedev, L.P.: Applications of Tensor Analysis in Continuum Mechanics. World Scientific, London (2018) open in new tab
  26. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer-Briefs in Applied Sciences and Technologies. Springer, Heidelberg (2013) open in new tab
  27. Eremeyev, V.A., Pietraszkiewicz, W.: Local symmetry group in the general theory of elastic shells. J. Elast. 85(2), 125-152 (2006) open in new tab
  28. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. Int. J. Solids Struct. 49(14), 1993-2005 (2012) open in new tab
  29. Ericksen, J.L., Truesdell, C.: Exact tbeory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295-323 (1958) open in new tab
  30. Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, New York (1999) open in new tab
  31. Eugster, S., dell'Isola, F., Steigmann, D.: Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math. Mech. Complex Syst. 7(1), 75-98 (2019) open in new tab
  32. Fleck, N.A., Deshpande, V.S., Ashby, M.F.: Micro-architectured materials: past, present and future. Proc. R. Soc. A Math. Phys. Eng. Sci. 466(2121), 2495-2516 (2010) open in new tab
  33. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge Solid State Science Series, 2nd edn. Cam- bridge University Press, Cambridge (1997) open in new tab
  34. Giorgio, I., dell'Isola, F., Steigmann, D.J.: Axisymmetric deformations of a 2nd grade elastic cylinder. Mech. Res. Commun. 94, 45-48 (2018) open in new tab
  35. Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87-108 (2012) open in new tab
  36. Graefe, R., Gappoev, M., Pertschi, O.: Vladimir G. Šuchov 1853-1939: die Kunst der Sparsamen Konstruktion. Deutsche Verlags-Anstalt, Stuttgart (1990) open in new tab
  37. Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff-Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251-269 (2013) open in new tab
  38. Green, A.E., Laws, N.: A general theory of rods. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 293(1433), 145-155 (1966) open in new tab
  39. Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods. II. Developments by direct approach. Int. J. Solids Struct. 337(1611), 485-507 (1974) open in new tab
  40. Hans, S., Boutin, C.: Dynamics of discrete framed structures: a unified homogenized description. J. Mech. Mater. Struct. 3(9), 1709-1739 (2008) open in new tab
  41. Hodges, D.H.: Nonlinear Composite Beam Theory, Progress in Astronautics and Aeronautics, vol. 213. American Institute of Aeronautics and Astronautics, Reston (2006)
  42. Hütter, G.: Homogenization of a Cauchy continuum towards a micromorphic continuum. J. Mech. Phys. Solids 99, 394-408 (2017) open in new tab
  43. Ieşan, D.: Classical and Generalized Models of Elastic Rods. CRC Press, Boca Raton (2009) open in new tab
  44. Kafadar, C.B.: On the nonlinear theory of rods. Int. J. Eng. Sci. 10(4), 369-391 (1972) open in new tab
  45. Kleiber, M., Wożniak, C.: Nonlinear Mechanics of Structures. Kluwer, Dordrecht (1991) open in new tab
  46. Lakes, R.S.: Experimental microelasticity of two porous solids. Int. J. Solids Struct. 22(1), 55-63 (1986) open in new tab
  47. Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, London (2010) open in new tab
  48. Lee, J., Kim, J., Hyeon, T.: Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18(16), 2073-2094 (2006) open in new tab
  49. Libai, A., Simmonds, J.G.: Nonlinear elastic shell theory. Adv. Appl. Mech. 23, 271-371 (1983) open in new tab
  50. Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd edn. Cambridge University Press, Cambridge (1998) open in new tab
  51. Librescu, L., Song, O.: Thin-Walled Composite Beams: Theory and Application, Solid Mechanics and Its Applications, vol. 131. Springer, Dordrecht (2006)
  52. Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990) open in new tab
  53. Mills, N.: Polymer Foams Handbook. Engineering and Biomechanics Applications and Design Guide. Butterworth- Heinemann, Amsterdam (2007) open in new tab
  54. Miśkiewicz, M.: Structural response of existing spatial truss roof construction based on Cosserat rod theory. Continuum Mech. Thermodyn. 31(1), 79-99 (2019) open in new tab
  55. Noor, A.K., Nemeth, M.P.: Analysis of spatial beamlike lattices with rigid joints. Comput. Methods Appl. Mech. Eng. 24(1), 35-59 (1980) open in new tab
  56. Noor, A.K., Nemeth, M.P.: Micropolar beam models for lattice grids with rigid joints. Comput. Methods Appl. Mech. Eng. 21(2), 249-263 (1980) open in new tab
  57. Phani, A.S., Hussein, M.I.: Dynamics of Lattice Materials. Wiley, Chichester (2017) open in new tab
  58. Pietraszkiewicz, W.: The resultant linear six-field theory of elastic shells: what it brings to the classical linear shell models? ZAMM 96(8), 899-915 (2016) open in new tab
  59. Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3-4), 774-787 (2009) open in new tab
  60. Pietraszkiewicz, W., Konopińska, V.: Junctions in shell structures: a review. Thin Walled Struct. 95, 310-334 (2015) open in new tab
  61. Pipkin, A.C.: Some developments in the theory of inextensible networks. Quart. Appl. Math. 38(3), 343-355 (1980) open in new tab
  62. Pipkin, A.C.: Equilibrium of Tchebychev nets. Arch. Ration. Mech. Anal. 85(1), 81-97 (1984) open in new tab
  63. Pipkin, A.C.: Network theory. In: Spencer, A.J.M. (ed.) Continuum Theory of the Mechanics of Fibre-Reinforced Composites, pp. 267-284. Springer, New York (1984) open in new tab
  64. Pshenichnov, G.I.: A Theory of Latticed Plates and Shells. World Scientific, Singapore (1993) open in new tab
  65. Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell'Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148-172 (2015) open in new tab
  66. Rivlin, R.S.: Networks of inextensible cords. In: Barenblatt, G.I., Joseph, D.D. (eds.) Collected Papers of R.S. Rivlin, vol. 1, pp. 566-579. Springer, New York (1997) open in new tab
  67. Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer, Dordrecht (2000) open in new tab
  68. Rueger, Z., Lakes, R.S.: Experimental Cosserat elasticity in open-cell polymer foam. Philos. Mag. 96(2), 93-111 (2016) open in new tab
  69. Rueger, Z., Lakes, R.S.: Strong Cosserat elasticity in a transversely isotropic polymer lattice. Phys. Rev. Lett. 120(6), 065501 (2018) open in new tab
  70. Shirani, M., Luo, C., Steigmann, D.J.: Cosserat elasticity of lattice shells with kinematically independent flexure and twist. Continuum Mech. Thermodyn. 31(4), 1087-1097 (2019) open in new tab
  71. Simmonds, J.G.: A Brief on Tensor Analysis, 2nd edn. Springer, New York (1994) open in new tab
  72. Soleimani Dorcheh, A., Abbasi, M.: Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199(1), 10-26 (2008) open in new tab
  73. Steigmann, D.J.: Continuum theory for elastic sheets formed by inextensible crossed elasticae. Int. J. Non-Linear Mech. 106, 324-329 (2018) open in new tab
  74. Steigmann, D.J.: Equilibrium of elastic lattice shells. J. Eng. Math. 109(1), 47-61 (2018) open in new tab
  75. Steigmann, D.J., dell'Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373-382 (2015) open in new tab
  76. Steigmann, D.J., Pipkin, A.C.: Equilibrium of elastic nets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 335(1639), 419-454 (1991) open in new tab
  77. Svetlitsky, V.A.: Statics of Rods. Springer, Berlin (2000) open in new tab
  78. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004) open in new tab
  79. Turco, E.: Discrete is it enough? The revival of Piola-Hencky keynotes to analyze three-dimensional elastica. Continuum Mech. Thermodyn. 30(5), 1039-1057 (2018) open in new tab
  80. Valanis, K.C., Landel, R.F.: The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38(7), 2997-3002 (1967) open in new tab
  81. Vetyukov, Y.: Nonlinear Mechanics of Thin-Walled Structures: Asymptotics, Direct Approach and Numerical Analysis. Springer, Vienna (2014) open in new tab
  82. Vetyukov, Y.: Non-material finite element modelling of large vibrations of axially moving strings and beams. J. Sound Vibr. 414, 299-317 (2018) open in new tab
  83. Vetyukov, Y., Oborin, E., Scheidl, J., Krommer, M., Schmidrathner, C.: Flexible belt hanging on two pulleys: contact problem at non-material kinematic description. Int. J. Solids Struct. 168, 183-193 (2019) open in new tab
  84. Wilson, E.B.: Vector Analysis. Founded Upon the Lectures of G. W. Gibbs. Yale University Press, New Haven (1901) open in new tab
  85. Witkowski, W.: 4-node combined shell element with semi-EAS-ANS strain interpolations in 6-parameter shell theories with drilling degrees of freedom. Comput. Mech. 43, 307-319 (2009) open in new tab
  86. Wożniak, C.: Lattice Surface Structures. PWN, Warsaw (1970). (in Polish) open in new tab
Verified by:
Gdańsk University of Technology

seen 125 times

Recommended for you

Meta Tags