Ultra-Miniaturized HMSIW Cavity-Backed Reconfigurable Antenna Diplexer Employing Dielectric Fluids with Wide Frequency Tuning Range
Abstract
This communication presents an ultra-miniaturized two-way frequency tunable antenna diplexer based on cavity-backed slots and dielectric fluids. The proposed antenna utilizes two half-mode substrate-integrated rectangular cavities loaded with slots and fluidic pockets. The conventional size reduction is achieved by employing half-mode cavities, whereas ultra-miniaturization is obtained by applying the slots, which provides additional capacitive loading. As the cavities are of unequal sizes, a weak cross-coupling path is created between the ports to obtain high isolation (>30 dB). The isolation is further enhanced by loading the slots. Two mechanisms are analyzed to tune the frequency bands individually or simultaneously. Firstly, the width of the slots can be altered to tune the frequency bands. However, this method involves modification of the physical dimensions of the antenna. Secondly, fluidic vias are created on the bottom plane of the cavities. These can be filled with various dielectric liquids to achieve frequency reconfigurability without altering the physical dimensions of the antenna. To demonstrate the concepts considered, the prototype of the proposed antenna was fabricated and experimentally validated. The structure has a footprint of 0.045λg2 and an isolation exceeding 33.4 dB. The operating frequencies are tunable in the range from 3.08 to 3.84 GHz (lower band) and from 4.97 to 6.33 GHz (upper band) by varying the dimensions of the slots whereas the operating frequencies are reconfigurable in the range from 2.74 to 3.38 GHz (lower band) and from 4.54 to 5.58 GHz (upper band), by employing microfluidic approach. As a result, the working frequencies may be varied in the range from 2.74 to 3.84 GHz (lower band) and from 4.54 to 6.33 GHz (upper band), making this antenna diplexer a competitive candidate for several communication systems. The cross-polarization levels, front-to-back ratio, and realized gain are greater than 19 dB, 18 dB, and 2. dBi, respectively. Excellent consistency is observed between full-wave simulation results and the measurement data.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (2)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Scientific Reports
no. 14,
ISSN: 2045-2322 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Barik R. K., Kozieł S.: Ultra-Miniaturized HMSIW Cavity-Backed Reconfigurable Antenna Diplexer Employing Dielectric Fluids with Wide Frequency Tuning Range// Scientific Reports -Vol. 14, (2024), s.1-17
- DOI:
- Digital Object Identifier (open in new tab) 10.1038/s41598-024-79609-3
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 0 times
Recommended for you
Frequency-Reconfigurable Hybrid SIW-Based Self-Diplexing Antenna Using Solid and Liquid Dielectric Loading
- M. G. Reddy,
- K. Subramanian,
- N. Pradhan
- + 1 authors
Substrate Integrated Waveguide-Based Ultra-Compact Self-Heptaplexing Antenna for IoT Connectivity
- N. Pradhan,
- S. Kozieł,
- K. Subramanian