Urine headspace analysis in medical diagnostics - Publication - Bridge of Knowledge

Search

Urine headspace analysis in medical diagnostics

Abstract

The analysis of the volatile organic compounds in the bodily fluids such as urine may provide useful information on the patients’ general health. The potential application of urine headspace analysis could facilitate the diagnostics of various diseases such as metabolic disorders, urinary tract diseases and gastrointestinal conditions. Described in this paper are the currently available techniques of urine sample analysis as well as their different application in medical diagnostics.

Cite as

Full text

download paper
downloaded 104 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
World Scientific News edition 110, pages 236 - 243,
ISSN:
Language:
English
Publication year:
2018
Bibliographic description:
Kalinowska K., Namieśnik J.: Urine headspace analysis in medical diagnostics// World Scientific News. -., iss. 110 (2018), s.236-243
Bibliography: test
  1. C.M. Willis et al., Olfactory detection of human bladder cancer by dogs: proof of principle study, Bmj 329 (7468) (2004) 712-717. open in new tab
  2. J.-N. Cornu et al., Olfactory Detection of Prostate Cancer by Dogs Sniffing Urine: A Step Forward in Early Diagnosis, Eur. Urol. 59 (2) (2011) 197-201. open in new tab
  3. D.G. Burke et al., Profiles of Urinary Volatiles from Metabolic Disorders Characterized by Unusual Odors, Clin. Chem. 2910 (10) (1983) 1834-1838. open in new tab
  4. I. Demkowska, Ż. Polkowska, and J. Namieśnik, Non-invasive biological fluid matrices analysed to assess exposure to environmental tobacco smoke, J. Expo. Sci. Environ. Epidemiol. 21 (6) (2011) 656-661. open in new tab
  5. Ż. Polkowska et al., Biological Fluids as a Source of Information on the Exposure of Man to Environmental Chemical Agents, Crit. Rev. Anal. Chem. 34 (2) (2004) 105-119. open in new tab
  6. K. Kozłowska, Ż. Polkowska, and J. Namieśnik, Effect of treated swimming pool water on the levels of trihalomethanes in swimmer's urine, Toxicol. Environ. Chem. 88 (2) (2006) 259-272. open in new tab
  7. Ż. Polkowska et al., Relationship between volatile organohalogen compounds in drinking water and human urine in Poland, Chemosphere 53 (8) (2003) 899-909. open in new tab
  8. N. Jakubowska et al., Procedure of determination of volatile trihalomethanes in human urine with pervaporation and gas chromatography, Int. J. Environ. Anal. Chem. 87 (6) (2007) 449-457.
  9. K. Yuan et al., A GC-based metabonomics investigation of type 2 diabetes by organic acids metabolic profile, J. Chromatogr. B 850 (2007) 236-240. open in new tab
  10. M. Phillips et al., Breath biomarkers of active pulmonary tuberculosis, Tuberculosis 90 (2) (2010) 145-151. open in new tab
  11. K.M. Banday et al., Use of Urine Volatile Organic Compounds To Discriminate Tuberculosis Patients from Healthy Subjects, Anal. Chem 83 (2011) 5526-5534. open in new tab
  12. R.E. Huebner, M.F. Schein, and J.B.J. Bass, The tuberculin skin test, Clin. Infect. Dis. 17 (6) (1993) 968-975. open in new tab
  13. G.M. Lordi and L.B. Reichman, Tuberculin Skin Testing, in Schlossberg D. (Ed.), Clin. Top. Infect. Dis., 1st ed., Springer, New York, (1988). open in new tab
  14. K.K. Pasikanti, P.C. Ho, and E.C.Y. Chan, Gas chromatography/mass spectrometry in metabolic profiling of biological fluids, J. Chromatogr. B 871 (2008) 202-211. open in new tab
  15. S. Armenta, M. Alcala, and M. Blanco, A review of recent, unconventional applications of ion mobility spectrometry (IMS), Anal. Chim. Acta 703 (2011) 114-123. open in new tab
  16. M. Zeng, N. Inohara, and G. Nuñez, Mechanisms of inflammation-driven bacterial dysbiosis in the gut, Mucosal Immunol. 10 (2017) 18-26. open in new tab
  17. W.H. Moos et al., Microbiota and Neurological Disorders: A Gut Feeling, Biores. Open Access 5 (1) (2016) 137-145. open in new tab
  18. R.P. Arasaradnam et al., Evaluation of gut bacterial populations using an electronic e- nose and field asymmetric ion mobility spectrometry: further insights into 'fermentonomics,' J. Med. Eng. Technol. 36 (7) (2012) 333-337. open in new tab
  19. J.P. Gisbert and A.G. Mcnicholl, Clinical Review Questions and answers on the role of faecal calprotectin as a biological marker in inflammatory bowel disease, Dig. Liver Dis. 41 (2009) 56-66. open in new tab
  20. S. Jewitt, Geographies of shit: spatial and temporal variations in attitudes towards human waste, Prog. Hum. Geogr. 35 (5) (2011) 608-626. open in new tab
  21. E. Westenbrink et al., Development and application of a new electronic nose instrument for the detection of colorectal cancer, Biosens. Bioelectron. 67 (2015) 733-738. open in new tab
  22. D.C. Baumgart and S.R. Carding, Inflammatory bowel disease: cause and immunobiology, Lancet 369 (9573) (2007) 1627-1640. open in new tab
  23. S.B. Hanauer, Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities, Inflamm. Bowel Dis. 12 Suppl 1 (2006) S3-9. open in new tab
  24. R.P. Arasaradnam et al., A Novel Tool for Noninvasive Diagnosis and Tracking of Patients with Inflammatory Bowel Disease, Inflamm. Bowel Dis. 19 (5) (2013) 999- 1003. open in new tab
  25. L. Capelli et al., Application and Uses of Electronic Noses for Clinical Diagnosis on Urine Samples: A Review, Sensors 16 (10) (2016) 1708. open in new tab
  26. A.M. Diskin, P. Spaněl, and D. Smith, Increase of acetone and ammonia in urine headspace and breath during ovulation quantified using selected ion flow tube mass spectrometry, Physiol. Meas. Physiol. Meas 24 (24) (2003) 191-191. open in new tab
  27. G.-M. Pinggera et al., Urinary acetonitrile concentrations correlate with recent smoking behaviour, BJU Int. 95 (3) (2005) 306-309. open in new tab
  28. B. Zhou et al., Multi-dysfunctional pathophysiology in ITP, Crit. Rev. Oncol. Hematol. 54 (2) (2005) 107-16. open in new tab
  29. C.A. Batty et al., Differences in microbial metabolites in urine headspace of subjects with Immune Thrombocytopenia (ITP) detected by volatile organic compound (VOC) analysis and metabolomics, Clin. Chim. Acta 461 (2016) 61-68. open in new tab
  30. M. Bernabei et al., A preliminary study on the possibility to diagnose urinary tract cancers by an electronic nose, Sensors Actuators B Chem. 131 (1) (2008) 1-4. open in new tab
  31. A. D 'Amico et al., A novel approach for prostate cancer diagnosis using a gas sensor array, Procedia Eurosensors XXVI, (2012): pp. 1113-1116.
Verified by:
Gdańsk University of Technology

seen 129 times

Recommended for you

Meta Tags