Wave transmission across surface interfaces in lattice structures - Publication - MOST Wiedzy

Search

Wave transmission across surface interfaces in lattice structures

Abstract

Within the lattice dynamics formulation, we present an exact solution for anti-plane surface waves in a square lattice strip with a surface row of material particles of two types separated by a linear interface. The considered problem is a discrete analog of an elastic half-space with surface stresses modelled through the simplified Gurtin–Murdoch model, where we have an interfacial line separating areas with different surface elastic properties. The main attention is paid to the transmittance and the reflectance of a wave across the interface. The presented results shed a light on the influence on surface waves of surface inhomogeneity in surface elastic properties such as grain and subgrain boundaries.

Citations

  • 8

    CrossRef

  • 7

    Web of Science

  • 8

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE pages 1 - 16,
ISSN: 0020-7225
Language:
English
Publication year:
2019
Bibliographic description:
Sharma B., Eremeev V.: Wave transmission across surface interfaces in lattice structures// INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE -, (2019), s.1-16
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ijengsci.2019.103173
Bibliography: test
  1. Ablowitz, M. J. , & Fokas, A. S. (1997). Complex variables : Introduction and applications . Cambridge, UK, New York: Cambridge University Press . Achenbach, J. (1973). Wave propagation in elastic solids . Amsterdam: North Holland . open in new tab
  2. Ayzenberg-Stepanenko, M. , Mishuris, G. , & Slepyan, L. (2014). Brittle fracture in a periodic structure with internal potential energy. spontaneous crack propagation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470 . 20140121. open in new tab
  3. Belov, P. A. , Lurie, S. A. , & Golovina, N. Y. (2019). Classifying the existing continuum theories of ideal-surface adhesion. In Adhesives and adhesive joints in industry (pp. 1-12). IntechOpen .
  4. Berinskii, I. E. , & Slepyan, L. I. (2017). How a dissimilar-chain system is splitting: Quasi-static, subsonic and supersonic regimes. Journal of the Mechanics and Physics of Solids, 107 , 509-524 . open in new tab
  5. Born, M. , & Huang, K. (1985). Dynamical theory of crystal lattices. The international series of monographs on physics. oxford classic texts in the physical sciences . Oxford: The Clarendon Press, Oxford University Press .
  6. Böttcher, A. , & Silbermann, B. (2006). Analysis of Toeplitz operators (2nd). Cambridge, U.K.: Springer . open in new tab
  7. Brillouin, L. (1946). Wave propagation in periodic structures: Electric filters and crystal lattices . New York: McGrow-Hill .
  8. Chebakov, R. , Kaplunov, J. , & Rogerson, G. A. (2016). Refined boundary conditions on the free surface of an elastic half-space taking into account non-local effects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472 , 20150800 . open in new tab
  9. Chen, H. T. , Taylor, A. J. , & Yu, N. (2016). A review of metasurfaces: Physics and applications. Reports on Progress in Physics, 79 , 076401 . Duan, H. L. , Wang, J. , & Karihaloo, B. L. (2008). Theory of elasticity at the nanoscale. In Adv. appl. mech.: vol. 42 (pp. 1-68). Elsevier . open in new tab
  10. Ege, N. , Erba ¸s , B. , Kaplunov, J. , & Wootton, P. (2018). Approximate analysis of surface wave-structure interaction. Journal of Mechanics of Materials and Structures, 13 , 297-309 . open in new tab
  11. Eremeyev, V. A. (2016). On effective properties of materials at the nano-and microscales considering surface effects. Acta Mechanica, 227 , 29-42 . open in new tab
  12. Eremeyev, V. A. (2019). Strongly anisotropic surface elasticity and antiplane surface waves. Philosophical Transactions of the Royal Society A , 1-14. doi: 10. 1098/rsta.2019.0100 . open in new tab
  13. Eremeyev, V. A. , Rosi, G. , & Naili, S. (2016). Surface/interfacial anti-plane waves in solids with surface energy. Mechanics Research Communications, 74 , 8-13 . open in new tab
  14. Eremeyev, V. A., & Sharma, B. L. (2019). Anti-plane surface waves in media with surface structure: Discrete vs . continuum model. International Journal of Engineering Science, 143 , 33-38. doi: 10.1016/j.ijengsci.2019.06.007 . open in new tab
  15. Gakhov, F. D. (1990). Boundary value problems . Dover Publications, Inc., New York . Translated from the Russian, Reprint of the 1966 translation. Gohberg, I. , & Krein, M. G. (1960). System of integral equations on a half-plane with kernels depending on the difference of arguments. Amer. Math. Soc. Transl. Ser. 2, 14 , 217-287 . open in new tab
  16. Gorbushin, N. , & Mishuris, G. (2019). Dynamic fracture of a dissimilar chain. Philosophical Transactions of the Royal Society A, 377 , 20190103 . Gorbushin, N. , Vitucci, G. , Volkov, G. , & Mishuris, G. (2018). Influence of fracture criteria on dynamic fracture propagation in a discrete chain. International Journal of Fracture, 209 , 131-142 . open in new tab
  17. Gurtin, M. E. , & Murdoch, A. I. (1975). A continuum theory of elastic material surfaces. Arch. Ration. Mech. An., 57 , 291-323 . open in new tab
  18. Gurtin, M. E. , & Murdoch, A. I. (1978). Surface stress in solids. Int. J. Solids Struct., 14 , 431-440 . open in new tab
  19. Han, Z. , Mogilevskaya, S. G. , & Schillinger, D. (2018). Local fields and overall transverse properties of unidirectional composite materials with multiple nanofibers and Steigmann-Ogden interfaces. International Journal of Solids and Structures, 147 , 166-182 . open in new tab
  20. High, A. A. , Devlin, R. C. , Dibos, A. , Polking, M. , Wild, D. S. , Perczel, J. , . . . Park, H. (2015). Visible-frequency hyperbolic metasurface. Nature, 522 , 192 . open in new tab
  21. Holloway, C. L. , Kuester, E. F. , Gordon, J. A. , O'Hara, J. , Booth, J. , & Smith, D. R. (2012). An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, 54 , 10-35 . open in new tab
  22. Hoover, W. G. (1986). Molecular dynamics. Lecture Notes in Physics : 258. Berlin: Springer . open in new tab
  23. Javili, A. , dell'Isola, F. , & Steinmann, P. (2013). Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids, 61 , 2381-2401 . open in new tab
  24. Javili, A. , McBride, A. , & Steinmann, P. (2013). Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale. a unifying review. Applied Mechanics Reviews, 65 , 010802 . open in new tab
  25. Ji, D. , Song, H. , Zeng, X. , Hu, H. , Liu, K. , Zhang, N. , & Gan, Q. (2014). Broadband absorption engineering of hyperbolic metafilm patterns. Scientific Reports, 4 , 4498 . Jury, E. I. (1964). Theory and application of the z-transform method . New York: John Wiley . open in new tab
  26. Kaplunov, J. , Prikazchikov, D. , & Sultanova, L. (2019). Rayleigh-type waves on a coated elastic half-space with a clamped surface. Philosophical Transactions of the Royal Society A, 377 , 20190111 . open in new tab
  27. Kaplunov, J. , & Prikazchikov, D. A. (2017). Asymptotic theory for Rayleigh and Rayleigh-type waves. Advances in Applied Mechanics, 50 , 1-106 . open in new tab
  28. Kushch, V. I. , Mogilevskaya, S. G. , Stolarski, H. K. , & Crouch, S. L. (2013). Elastic fields and effective moduli of particulate nanocomposites with the Gurtin- Murdoch model of interfaces. International Journal of Solids and Structures, 50 , 1141-1153 . open in new tab
  29. Laplace, P. S. (1805). Sur l'action capillaire. supplément à la théorie de l'action capillaire. In Traité de mécanique céleste: vol. 4. Supplement 1, Livre X (pp. 771-777). Paris: Gauthier-Villars et fils . open in new tab
  30. Laplace, P. S. (1806). À la théorie de l'action capillaire. supplément à la théorie de l'action capillaire. In Traité de mécanique céleste: vol. 4. Supplement 2, Livre X (pp. 909-945). Paris: Gauthier-Villars et fils . open in new tab
  31. Li, P. , Dolado, I. , Alfaro-Mozaz, F. J. , Casanova, F. , Hueso, L. E. , Liu, S. , . . . Hillenbrand, R. (2018). Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science, 359 , 892-896 . open in new tab
  32. Longley, W. R., & Van Name, R. G. (Eds.) (1928). The collected works of j. willard gibbs, PHD., LL.d (vol. I Thermodynamics). New York: Longmans.
  33. Lurie, S. , Volkov-Bogorodsky, D. , Zubov, V. , & Tuchkova, N. (2009). Advanced theoretical and numerical multiscale modeling of cohesion/adhesion interac- tions in continuum mechanics and its applications for filled nanocomposites. Computational Materials Science, 45 , 709-714 . open in new tab
  34. Maradudin, A . A . , Montroll, E. W. , Weiss, G. H. , & Ipatova, I. P. (1971). Theory of lattice dynamics in the harmonic approximation (2nd). New York: Academic Press .
  35. Mason, J. C. , & Handscomb, D. C. (2003). Chebyshev polynomials . Chapman & Hall/CRC, Boca Raton, FL . open in new tab
  36. Miller, R. E. , & Shenoy, V. B. (20 0 0). Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 11 , 139-147 . open in new tab
  37. Mishuris, G. S. , Movchan, A. B. , & Slepyan, L. I. (2007). Waves and fracture in an inhomogeneous lattice structure. Waves in Random and Complex Media, 17 , 409-428 . open in new tab
  38. Mishuris, G. S. , Movchan, A. B. , & Slepyan, L. I. (2009). Localised knife waves in a structured interface. Journal of the Mechanics and Physics of Solids, 57 , 1958-1979 . open in new tab
  39. Mishuris, G. S. , & Slepyan, L. I. (2014). Brittle fracture in a periodic structure with internal potential energy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470 , 20130821 . open in new tab
  40. Morse, P. M. , & Ingard, K. U. (1968). Theoretical acoustics . New York: McGraw-Hill .
  41. Noble, B. (1958). Methods based on the Wiener-Hopf technique . London: Pergamon Press .
  42. Paley, R. E. A. C. , & Wiener, N. (1934). Fourier transforms in the complex domain . Providence, Rhode Island: American Mathematical Society .
  43. Placidi, L. , Rosi, G. , Giorgio, I. , & Madeo, A. (2014). Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Mathematics and Mechanics of Solids, 19 , 555-578 . open in new tab
  44. Poisson, S. D. (1831). Nouvelle théorie de l'action capillaire . Paris: Bachelier Père et Fils . open in new tab
  45. Porubov, A. V. , & Andrianov, I. V. (2013). Nonlinear waves in diatomic crystals. Wave Motion, 50 , 1153-1160 . open in new tab
  46. Porubov, A. V. , Krivtsov, A. M. , & Osokina, A. E. (2018). Two-dimensional waves in extended square lattice. International Journal of Non-Linear Mechanics, 99 , 281-287 . open in new tab
  47. Sevostianov, I. , & Kachanov, M. (2007). Effect of interphase layers on the overall elastic and conductive properties of matrix composites. applications to nanosize inclusion. International Journal of Solids and Structures, 44 , 1304-1315 . open in new tab
  48. Sharma, B. L. (2015a). Diffraction of waves on square lattice by semi-infinite crack. SIAM Journal on Applied Mathematics, 75 , 1171-1192 . open in new tab
  49. Sharma, B. L. (2015b). Diffraction of waves on square lattice by semi-infinite rigid constraint. Wave Motion, 59 , 52-68 . open in new tab
  50. Sharma, B. L. (2015c). Near-tip field for diffraction on square lattice by crack. SIAM Journal on Applied Mathematics, 75 , 1915-1940. doi: 10.1137/15M1010646 . open in new tab
  51. Sharma, B. L. (2015d). Near-tip field for diffraction on square lattice by rigid constraint. Zeitschrift für angewandte Mathematik und Physik, 66 , 2719-2740. doi: 10.10 07/s0 0 033-015-0508-z . open in new tab
  52. Sharma, B. L. (2016). Wave propagation in bifurcated waveguides of square lattice strips. SIAM Journal on Applied Mathematics, 76 , 1355-1381. doi: 10.1137/ 15M1051464 . open in new tab
  53. Sharma, B. L. (2017a). Continuum limit of discrete sommerfeld problems on square lattice. S ādhan ā, 42 , 713-728. doi: 10.1007/s12046-017-0636-6 . open in new tab
  54. Sharma, B. L. (2017b). On linear waveguides of square and triangular lattice strips: an application of Chebyshev polynomials. S ādhan ā, 42 , 901-927 . open in new tab
  55. Sharma, B. L. (2017c). On scattering of waves on square lattice half-plane with mixed boundary condition. Zeitschrift für angewandte Mathematik und Physik, 68 , 120 . open in new tab
  56. Shenoy, V. B. (2005). Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Physical Review B, 71 , 094104 . Slepyan, L. I. (2002). Models and phenomena in fracture mechanics . Berlin: Springer . open in new tab
  57. Sommerfeld, A. (1896). Mathematische Theorie der Diffraction. Mathematical Annals, 47 , 317-374. doi: 10.1007/BF01447273 . Sommerfeld, A. (1964). Optics: lectures on theoretical physics, vol IV . New York: Academic Press . open in new tab
  58. Steigmann, D. J. , & Ogden, R. W. (1997). Plane deformations of elastic solids with intrinsic boundary elasticity. Proceedings of the Royal Society A, 453 , 853-877 . open in new tab
  59. Steigmann, D. J. , & Ogden, R. W. (1999). Elastic surface-substrate interactions. Proceedings of the Royal Society A, 455 , 437-474 . open in new tab
  60. Überall, H. (1973). Surface waves in acoustics. In W. P. Mason, & R. N. Thurston (Eds.), Physical acoustics: vol. X (pp. 1-60). New York: Academic Press . Wallis, R. (1964). Surface effects on lattice vibrations. Surface Science, 2 , 146-155. doi: 10.1016/0 039-6028(64)90 053-6 . open in new tab
  61. Wallis, R. F. (1959). Theory of surface modes of vibration in two-and three-dimensional crystal lattices. Physical Review, 116 , 302-308. doi: 10.1103/PhysRev. 116.302 . open in new tab
  62. Wang, J. , Huang, Z. , Duan, H. , Yu, S. , Feng, X. , Wang, G. , . . . open in new tab
  63. Wang, T. (2011). Surface stress effect in mechanics of nanostructured materials. Acta Mechani- caenics Solida Sin., 24 , 52-82 . open in new tab
  64. Wang, X. , & Schiavone, P. (2015). Two circular inclusions with arbitrarily varied surface effects. Acta Mechanica, 226 , 1471-1486 . open in new tab
  65. Wang, X. , & Schiavone, P. (2016). A mode-III crack with variable surface effects. Journal of Theoretical and Applied Mechanics, 54 , 1319-1327 . open in new tab
  66. Wiener, N. , & Hopf, E. (1931). Über eine Klasse singulärer Integralgleichungen. Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math., 32 , 696-706 .
  67. Xu, L. , Wang, X. , & Fan, H. (2015). Anti-plane waves near an interface between two piezoelectric half-spaces. Mechanics Research Communications, 67 , 8-12 . Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95 , 65-87 . open in new tab
  68. Zemlyanova, A. Y. , & Mogilevskaya, S. G. (2018). Circular inhomogeneity with Steigmann-Ogden interface: Local fields, neutrality, and Maxwell's type ap- proximation formula. International Journal of Solids and Structures, 135 , 85-98 . open in new tab
Verified by:
Gdańsk University of Technology

seen 18 times

Recommended for you

Meta Tags