Zirconia ceramics with additions of Alumina for advanced tribological and biomedical applications - Publication - Bridge of Knowledge

Search

Zirconia ceramics with additions of Alumina for advanced tribological and biomedical applications

Abstract

The results of an investigation on slip cast and sintered Y2O3 (3 wt%)- stabilized ZrO2 with additions of 5, 10, 15 wt% Al2O3 are reported. The surface roughness, porosity and density of the samples were measured. The hardness HRc and Hv, fracture toughness K1C, and friction coefficients were also measured using standard methods. The structural properties of the samples were observed by Scanning Electron Microscopy (SEM). The surface topography was evaluated by means of Chromatic White Light Interferometry using MicroSpy® Topo of FRT Rauheit Kontur before and after tribological tests. The phase and chemical composition were analyzed by X-Ray Diffractometry (XRD), Energy Dispersive X-ray (EDX) spectroscopy, and Raman spectroscopy. Results show that the addition of Al2O3 into YSZ ceramics in the range of 5–10% allows the mechanical and tribological characteristics of the material that can be applied in different mechanical machines for different metallurgical processes to be improved, as well as in chemical engineering or medicine.

Citations

  • 4 6

    CrossRef

  • 0

    Web of Science

  • 4 9

    Scopus

Authors (8)

  • Photo of  Stefan Reichert

    Stefan Reichert

    • Karlsruhe Institute of Technology Institute of Product Engineering (IPEK)
  • Photo of  Andrzej Krupa

    Andrzej Krupa

    • Polish Academy of Science Institute of Fluid-Flow Machinery
  • Photo of  Mirosław Sawczak

    Mirosław Sawczak

    • Polish Academy of Science Institute of Fluid-Flow Machinery
  • Photo of  Anna Zykova

    Anna Zykova

    • NSC Kharkov Institute Physics & Technology NASU Kharkov Institute of Physics and Technology
  • Photo of  K. Lobach

    K. Lobach

    • NSC Kharkov Institute Physics & Technology NASU Kharkov Institute of Physics and Technology
  • Photo of  S. Sayenko

    S. Sayenko

    • NSC Kharkov Institute Physics & Technology NASU Kharkov Institute of Physics and Technology
  • Photo of  Ye. Svitlychnyi

    Ye. Svitlychnyi

    • NSC Kharkov Institute Physics & Technology NASU Kharkov Institute of Physics and Technology

Cite as

Full text

download paper
downloaded 400 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CERAMICS INTERNATIONAL no. 43, edition 13, pages 9746 - 9752,
ISSN: 0272-8842
Language:
English
Publication year:
2017
Bibliographic description:
Ghaemi M., Reichert, S., Krupa A., Sawczak M., Zykova, A., Lobach K., Sayenko S., Svitlychnyi Y.: Zirconia ceramics with additions of Alumina for advanced tribological and biomedical applications// CERAMICS INTERNATIONAL. -Vol. 43, iss. 13 (2017), s.9746-9752
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ceramint.2017.04.150
Bibliography: test
  1. A.G. Evans, Perspective on the development of high-toughness ceramics, J. Am. Ceram. Soc. 72 (1990) 187-192. open in new tab
  2. J. Fraim, J. Mc Kittrick, Modeling and Fabrication, of fine-grain alumina-zirconia composites produced by nanocrystalline precursor, J. Am. Ceram. Soc. 81 (1998) 1773-1780. open in new tab
  3. B. Warcholinski, A. Gilewicz, O. Lupicka, J. Rochowicz, S. Sayenko, Y. Svitlychnyi, A. Zykova, Effect of zirconia stabilized by ittria additions on the structure and mechanical properties of alumina based ceramic, Funct. Mater. 21 (4) (2014) 403-408. open in new tab
  4. S. Biamino, P. Fino, M. Pavese, C. Badini, Alumina-zirconia-yttria nanocompo- sites prepared by solution combustion synthesis, Ceram. Int. 32 (2006) 509-513. open in new tab
  5. X. Guo, Roles of alumina in zirconia for functional applications, J. Am. Ceram. Soc. 86 (11) (2003) 1867-1873. open in new tab
  6. L. Blaise, F. Villermaux, B. Calés, Ageing of zirconia: everything you always wanted to know, Key Eng. Mater. 192/195 (2001) 553-556. open in new tab
  7. C. Piconi, G. Maccauro, Zirconia as a ceramic biomaterial, Biomaterials 20 (1999) 1-25. open in new tab
  8. G. Heimke, S. Leyen, G. Willmann, Knee arthroplasty: recently developed ceramics offer new solutions, Biomaterials 23 (2002) 1539-1551. open in new tab
  9. E. Marcella, N. Denis, B.W. Susie, M.P. Ast, M.W. Timothy, E.P. Douglas, Zirconia phase transformation, metal transfer, and surface roughness in retrieved ceramic composite femoral heads in total hip arthroplasty, J. Arthroplast. 29 (2014) 2219-2223.
  10. P.F. Becher, Toughening behavior in ceramics associated with the transformation of tetragonal ZrO2, Acta Metall. 34 (1986) 1885-1891. open in new tab
  11. E. Medvedovski, R.J. Liewellyn, Oxide ceramics for abrasion and erosion resistance applications, Interceram 51 (2002) 120-126. open in new tab
  12. P. Rao, M. Iwasa, J. Wu, J. Ye, Y. Wang, Effect of Al 2 O 3 addition on ZrO 2 phase composition in the Al 2 O 3 -ZrO 2 system, Ceram. Int. 30 (2004) 923-926. open in new tab
  13. A.A. NogiwaValdez, W.M. Rainforth, P. Zeng, I.M. Ross, Deceleration of hydro- thermal degradation of 3Y-TZP by alumina and lanthana co-doping, Acta Biomater. 9 (2013) 6226-6235. open in new tab
  14. Sh Ngashangua, S. Vasanthavel, V. Ponnilavan, S. Kannan, Effect of MgO additions on the phase stability and degradation ability in ZrO 2 -Al 2 O 3 composite systems, Ceram. Int. 41 (2015) 3814-3821. open in new tab
  15. R.C. Garvie, P.S. Nicholson, Structure and thermodynamical properties of partially stabilized zirconia in the CaO-ZrO 2 system, J. Am. Ceram. Soc. 55 (1972) 152-157. open in new tab
  16. S. Jahanmir, X. Dong, Wear mechanics of aluminum oxide ceramics, Frict. Wear Ceram. 15 (1994) 50-54. open in new tab
  17. S. Choi, N. Bansal, Mechanical behaviour of zirconia/alumina composites, Ceram. Int. 31 (1) (2005) 39-46. open in new tab
  18. S. Tekeli, Influence of Alumina addition on grain growth and room temperature mechanical properties of 8YSCZ/Al 2 O 3 composites, Compos. Sci. Technol. 65 (6) (2005) 967-972. open in new tab
  19. R.H.L. Garcia, V. Ussui, N.B. de Lima, E.N.S. Muccillo, D.R.R. Lazar, Physical properties of Alumina/yttria-stabilized Zirconia composites with improved micro- structure, J. Alloy. Compd. 486 (2009) 747-753. open in new tab
  20. H.L. Calamba´s Pulgarin, L.B. Garrido, M.P. Albano, Comparison of different zirconia powders for slip casting of alumina-zirconia ceramics, Adv. Appl. Ceram. 112 (2013) 39-45. open in new tab
  21. J.C. Valmalette, M. Isa, Size effects on the stabilization of ultrafine zirconia nanoparticles, Chem. Mater. 14 (2002) 5098-5102. open in new tab
  22. D. Casellas, L. Llanes, M. Anglada, et al., The transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures, J. Eur. Ceram. Soc. 21 (2001) 765-777. open in new tab
  23. A. Ghosh, A.K. Suri, M. Pandey, Nanocrystalline zirconia-yttria system-a Raman study, Mater. Lett. 60 (2006) 1170-1173. open in new tab
  24. O. Roberts, A.J.G. Lunt, S.Y.T. Sui, N. Baimpas, I.P. Dolbnya, M. Parkes, D. Dini, S. M. Kreynin, T.K. Neo, A.M. Korsunsky, A study of phase transformation at the surface of a zirconia ceramic, in: Proceedings of the World Congress on Engineering WCE 2014, London, U.K, 2, 2014, pp. 122-129.
  25. M. Tanaka, R. Kitazawa, T. Tomimatsu, Y.F. Liu, Y. Kagawa, Residual stress measurement of an EB-PVD Y2O3-ZrO2 thermal barrier coating by micro-Raman spectroscopy, Surf. Coat. Technol. 204 (2009) 657-660. open in new tab
  26. J. Cízek, O. Melikhova, I. Procházka, J. Kuriplach, R. Kuzel, G. Brauer, et al., Defect studies of nanocrystalline zirconia powders and sintered ceramics, Phys. Rev. B 81 (2010) 024116.
  27. G. Gregori, W. Burger, V. Sergo, Piezo-spectroscopic analysis of the residual stresses in zirconia-toughened alumina ceramics: the influence of the tetragonal-to- monoclinic transformation, Mater. Sci. Eng. A 271 (1999) 401-406. open in new tab
  28. F.F. Lange, M.M. Hirlinger, Hindrance of grain growth in А1 2 O 3 by ZrO 2 inclusions, J. Am. Ceram. Soc. 67 (1984) 164-167. open in new tab
  29. K. Hirota, K. Shibaya, H. Matsuda, M. Kato, H. Taguchi, Fabrication of novel ZrO 2 (Y 2 O 3 )-Al 2 O 3 ceramics, having high strength and toughness utilising pulsed electric current pressure sintering (PECPS), Adv. Appl. Ceram. 113 (2014) 73-79. open in new tab
  30. F.F. Lange, Transformation toughening. 4. Fabrication, fracture-toughness and strength of Al 2 O 3 -ZrO 2 composites, J. Mater. Sci. 17 (1982) 247-250. open in new tab
  31. P.F. Becher, K.B. Alexander, A. Bleier, S.B. Waters, W.H. Warwick, Influence of ZrO 2 grain size and content on the transformation response in the Al 2 O 3 -ZrO 2 (12 mol% CeO 2 ) system, J. Am. Ceram. Soc. 76 (1993) 657-661. open in new tab
  32. M. Szutkowka, M. Boniecki, Subcritical crack growth in zirconia-toughened Alumina (ZTA) ceramics, J. Mater. Process. Technol. 175 (2006) 416-419. open in new tab
  33. X. Wang, J. Tian, X. Yu, Y. Shan, Z. Liu, Y. Yin, Effect of microstructure on the fracture behaviour of micro-nano ZTA composite, Mater. Chem. Phys. 112 (2008) 213-217. open in new tab
  34. S.Y. Sayenko, E.O. Svitlychniy, K.V. Lobach, Application of electroconsolidation of powder components for production of ultradenced ceramics Al 2 O 3 and ZrO 2 (3% Y 2 O 3 ), Phys. Surf. Eng. 11 (2013) 285-288.
  35. S. Sayenko, Y. Svitlychnyi, K. Lobach, A. Surkov, Advanced Alumina and Zirconia ceramics produced by the electroconsolidation method, China's Refract. 25 (1) (2016) 39-43.
  36. M. Mazaheri, A. Simchi, F. Golestani-Fard, Densification and grain growth of nanocrystalline 3Y-TZP during two-step sintering, J. Eur. Ceram. Soc. 28 (2008) 2933-2939. open in new tab
  37. Y. Sakka, T. Ishii, T.S. Suzuki, K. Morita, K. Hiraga, Fabrication of high-strain rate superplastic yttria-doped Zirconia polycrystals by adding manganese and alumi- num oxides, J. Eur. Ceram. Soc. 24 (2004) 449-453. open in new tab
Verified by:
Gdańsk University of Technology

seen 201 times

Recommended for you

Meta Tags