Didn't find any results in this catalog!
But we have some results in other catalogs.Filters
total: 76
Search results for: ELECTROSPUN NANOFIBER-BASED MEMBRANES (ENMS)
-
A review on hydrophobic electrospun nanofibers-based materials and membranes for water treatment: Challenges, outlook, and stability
PublicationMembrane technology is well recognized as a dependable means of supplementing the availability of potable water through processes such as water purification and desalination. Electrospun nanofiber membranes have garnered significant attention because of their advantageous features, including a greater specific surface area, increased porosity, reduced thickness, and popularity. Consequently, ENMs have emerged as an up-and-coming...
-
A review on electrospun membranes for potential air filtration application
PublicationAir pollution is one of the major environmental concerns in most highly populated cities, which is typically caused by particulate (PM2.5 and PM0.1) or gaseous pollutants that can be removed using electrospun membranes. These membranes are characterized by different features in terms of uniform and controllable structure, tuneable porosity, and high surface area, where their separation efficiency strongly depends on their properties....
-
A critical review on electrospun membranes containing 2D materials for seawater desalination
PublicationElectrospun nanofibers are a cutting-edge class of membranes which have been applied in several molecular separations. These membranes can be well designed and tailored due to the versatility of the electrospinning process. Eminently, electrospun membranes, once implemented in membrane processes, are an alternative in removing salts and some other minerals from water, so-called desalination, for producing drinking water. Such membranes...
-
Electrospun Nanofiber Electrodes with in situ Exsolved Nanocatalysts for Symmetrical SOCs
Publication -
Electrospun Nanofiber Electrodes with in situ Exsolved Nanocatalysts for Symmetrical SOCs
Publication -
Application of photoactive electrospun nanofiber materials with immobilized meso-tetraphenylporphyrin for parabens photodegradation
Publication -
Chitosan-based electrospun nanofibers for encapsulating food bioactive ingredients: A review
PublicationToday, society has been more aware of healthy food products and related items containing bioactive compounds, which potentially contribute to human health. Unfortunately, the long-term stability and bioactivity of biologically active compounds against environmental factors compromise their target and effective action. In this way, lab-designed vehicles, such as nanoparticles and nanofibers, provide enough properties for their preservation...
-
Recent Advances in Graphene Oxide-Based Membranes for Heavy Metal Ions Separation
PublicationGraphene oxide (GO)-based membranes have been widely investigated for separation of dyes, salt ions, heavy metal ions, and biomolecules due to their high mechanical strength, single-layered structure, large surface area, and high affinity. However, due to irregular pore structure, nanochannels, interlayer distance, easy functionalization, swelling effect, and chemical stability under aqueous environment limited their separation...
-
CO2 Separation Using Supported Deep Eutectic Liquid Membranes Based on 1,2-propanediol
PublicationIn this work, deep eutectic solvents (DESs) composed of choline chloride, acetylcholine chloride or tetrabutylammonium chloride, and 1,2-propanediol were used as a liquid phase for polypropylene-based supported liquid membranes (SLMs) and evaluated for the separation of carbon dioxide from CO2/N2 mixtures. Fourier transform infrared spectra were obtained to confirm DES formation, and the thermal stability of solvents was investigated...
-
Towards azeotropic MeOH-MTBE separation using pervaporation chitosan-based deep eutectic solvent membranes
PublicationDeep eutectic solvents (DESs) are a new class of solvents that can offset some of the major drawbacks of common solvents and ionic liquids. When dealing with the preparation of dense membranes, the use of DESs is still challenging due to their low compatibility with the polymer phase. In this research, a novel L-proline:sulfolane (molar ratio 1:2) DES was synthesized and used for the preparation of more sustainable bio-based membranes...