Search results for: FASTER REGION BASED CONVOLUTION NEURAL NETWORK - Bridge of Knowledge

Search

Search results for: FASTER REGION BASED CONVOLUTION NEURAL NETWORK
Przykład wyników znalezionych w innych katalogach

Search results for: FASTER REGION BASED CONVOLUTION NEURAL NETWORK

  • Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents

    Publication
    • S. Donghui
    • L. Zhigang
    • J. Zurada
    • A. Manikas
    • J. Guan
    • P. Weichbroth

    - KNOWLEDGE AND INFORMATION SYSTEMS - Year 2024

    The construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...

    Full text available to download

  • Cascade Object Detection and Remote Sensing Object Detection Method Based on Trainable Activation Function

    Publication
    • S. N. Shivappriya
    • M. J. P. Priyadarsini
    • A. Stateczny
    • C. Puttamadappa
    • B. D. Parameshachari

    - Remote Sensing - Year 2021

    Object detection is an important process in surveillance system to locate objects and it is considered as major application in computer vision. The Convolution Neural Network (CNN) based models have been developed by many researchers for object detection to achieve higher performance. However, existing models have some limitations such as overfitting problem and lower efficiency in small object detection. Object detection in remote...

    Full text available to download

  • An Improved Convolutional Neural Network for Steganalysis in the Scenario of Reuse of the Stego-Key

    Publication

    - Year 2019

    The topic of this paper is the use of deep learning techniques, more specifically convolutional neural networks, for steganalysis of digital images. The steganalysis scenario of the repeated use of the stego-key is considered. Firstly, a study of the influence of the depth and width of the convolution layers on the effectiveness of classification was conducted. Next, a study on the influence of depth and width of fully connected...

    Full text to download in external service

  • Pedestrian detection in low-resolution thermal images

    Over one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...

    Full text to download in external service

  • Melanoma skin cancer detection using mask-RCNN with modified GRU model

    Publication

    - Frontiers in Physiology - Year 2024

    Introduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...

    Full text available to download

  • Global Surrogate Modeling by Neural Network-Based Model Uncertainty

    Publication

    - Year 2022

    This work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...

    Full text to download in external service

  • Intelligent turbogenerator controller based on artifical neural network

    The paper presents a desing of an intelligent controller based on neural network (ICNN). The ICNN ensures at the same time two fundamental functions : the maintaining of generator voltage at the desired value and the damping of the electromechanical oscillations. Its performance is evaluted on a single machine infinite bus power system through computer simulations. The dynamic and transient operation of the proposed controller...

    Full text available to download

  • Sign Language Recognition Using Convolution Neural Networks

    Publication

    The objective of this work was to provide an app that can automatically recognize hand gestures from the American Sign Language (ASL) on mobile devices. The app employs a model based on Convolutional Neural Network (CNN) for gesture classification. Various CNN architectures and optimization strategies suitable for devices with limited resources were examined. InceptionV3 and VGG-19 models exhibited negligibly higher accuracy than...

    Full text available to download

  • Discrete convolution based on polynomial residue representation

    This paper presents the study of fast discrete convolution calculation with use of the Polynomial Residue Number System (PRNS). Convolution can be based the algorithm similar to polynomial multiplication. The residue arithmetic allows for fast realization of multiplication and addition, which are the most important arithmetic operations in the implementation of convolution. The practical aspects of hardware realization of PRNS...

  • Resource constrained neural network training

    Publication

    Modern applications of neural-network-based AI solutions tend to move from datacenter backends to low-power edge devices. Environmental, computational, and power constraints are inevitable consequences of such a shift. Limiting the bit count of neural network parameters proved to be a valid technique for speeding up and increasing efficiency of the inference process. Hence, it is understandable that a similar approach is gaining...

    Full text available to download