Didn't find any results in this catalog!
But we have some results in other catalogs.displaying 1000 best results Help
Search results for: Statistical time series methods
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublicationAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
Using Statistical Methods to Estimate The Worst Case Response Time of Network Software Running on Indeterministic Hardware Platforms
PublicationIn this paper we investigate whether the statistical Worst Case Execution Time (WCET) estimation methods devised for embedded platforms can be successfully applied to find the Worst Case Response Time (WCRT) of a network application running on a complex hardware platform such as a contemporary commercial off-the-shelf (COTS) system. Establishing easy-to-use timing validation techniques is crucial for real-time applications and...
-
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublicationAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Testing Topological Conjugacy of Time Series
PublicationThis paper considers a problem of testing, from a finite sample, a topological conjugacy of two trajectories coming from dynamical systems (X, f ) and (Y, g). More precisely, given x1, . . . , xn \subset X and y1, . . . , yn \subset Y such that xi+1 = f (xi) and yi+1 = g(yi) as well as h : X \rightarrow Y, we deliver a number of tests to check if f and g are topologically conjugated via h. The values of the tests are close to...
-
Investigation of noises in the EPN weekly time series
PublicationThe constantly growing needs of permanent stati ons’ velocities users cause their stability level to increase. To this research we included more than 150 stations located across Europe operating within the EUREF Permanent Network (EPN) w ith weekly changes in the ITRF2005 reference frame. The obvious long-range dependencies in the stochastic part of GPS time series were p roven by Ljung-Box...
-
TIME SERIES DATA FOR 3D FLOOD MAPPING
PublicationThanks to the ability to collect information about large areas and with high frequency in time areas threatened by floods can be closely monitored. The effects of flooding are socio-economic losses. In order to reduce those losses, actions related to the determination of building zones are taken. Moreover, the conditions to be met by facilities approved for implementation in such areas are determined. Therefore, satellite data...
-
Time series - the tool for traffic safety analysis
PublicationGłównym celem artykułu jest przedstawienie sposobu modelowania i modeli stosowanych w analizach i prognozowaniu odnośnie zmian śmiertelności w wypadkach drogowych w Polsce. W tym celu zastosowano teorię modeli strukturalnych szeregów czasowych przy założeniu, że zarówno ruch drogowy, jak i bezpieczeństwo na drogach są procesami dynamicznymi, w których przeszłość ma znaczący wpływ na teraźniejszość i przyszłość systemu.
-
Short-Period Information in GPS Time Series
Publication -
Traffic fatalities modelling using time-series.
PublicationReferat zawiera opis jednaj z metod analizowania trendów bezpieczeństwa ruchu drogowego opartej na teorii szeregów czasowych. Przedstawiono w nim aplikację tej metody do badania związku pomiędzy liczbą śmiertelnych ofiar wypadków drogowych w Polsce w latach 1991-2003 a wielkością bezrobocia w tym czasie.
-
Traffic risk modelling using time-series
PublicationW referacie przedstawiono metodę prognozowania ryzyka w ruchu drogowym powstałą na bazie analizy szeregów czasowych. W jej oparciu dla danych o liczbie śmiertelnych ofiar wypadków drogowych w Polsce w latach 1989-2000 zbudowano model i wykonano prognozę rozwoju trendu w przyszłości.