Didn't find any results in this catalog!
But we have some results in other catalogs.Filters
total: 1458
displaying 1000 best results Help
Search results for: multi-gpu scalability
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublicationMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
Multi-GPU UNRES for scalable coarse-grained simulations of very large protein systems
PublicationGraphical Processor Units (GPUs) are nowadays widely used in all-atom molecular simulations because of the advantage of efficient partitioning of atom pairs between the kernels to compute the contributions to energy and forces, thus enabling the treatment of very large systems. Extension of time- and size-scale of computations is also sought through the development of coarse-grained (CG) models, in which atoms are merged into extended...
-
Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping
PublicationIn this paper we demonstrate that it is possible to obtain considerable improvement of performance and energy aware metrics for training of deep neural networks using a modern parallel multi-GPU system, by enforcing selected, non-default power caps on the GPUs. We measure the power and energy consumption of the whole node using a professional, certified hardware power meter. For a high performance workstation with 8 GPUs, we were...
-
Communication and Load Balancing Optimization for Finite Element Electromagnetic Simulations Using Multi-GPU Workstation
PublicationThis paper considers a method for accelerating finite-element simulations of electromagnetic problems on a workstation using graphics processing units (GPUs). The focus is on finite-element formulations using higher order elements and tetrahedral meshes that lead to sparse matrices too large to be dealt with on a typical workstation using direct methods. We discuss the problem of rapid matrix generation and assembly, as well as...
-
A multithreaded CUDA and OpenMP based power‐aware programming framework for multi‐node GPU systems
PublicationIn the paper, we have proposed a framework that allows programming a parallel application for a multi-node system, with one or more GPUs per node, using an OpenMP+extended CUDA API. OpenMP is used for launching threads responsible for management of particular GPUs and extended CUDA calls allow to manage CUDA objects, data and launch kernels. The framework hides inter-node MPI communication from the programmer who can benefit from...
-
Multi-GPU-powered UNRES package for physics-based coarse-grained simulations of structure, dynamics, and thermodynamics of protein systems at biological size- and timescales
PublicationCoarse-grained models are nowadays extensively used in biomolecular simulations owing to the tremendous extension of size- and time-scale of simulations. The physics-based UNRES (UNited RESidue) model of proteins developed in our laboratory has only two interaction sites per amino-acid residue (united peptide groups and united side chains) and implicit solvent. However, owing to rigorous physics-based derivation, which enabled...
-
Characterizing the Scalability of Graph Convolutional Networks on Intel® PIUMA
PublicationLarge-scale Graph Convolutional Network (GCN) inference on traditional CPU/GPU systems is challenging due to a large memory footprint, sparse computational patterns, and irregular memory accesses with poor locality. Intel’s Programmable Integrated Unffied Memory Architecture (PIUMA) is designed to address these challenges for graph analytics. In this paper, a detailed characterization of GCNs is presented using the Open-Graph Benchmark...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublicationPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Energy-Aware Scheduling for High-Performance Computing Systems: A Survey
PublicationHigh-performance computing (HPC), according to its name, is traditionally oriented toward performance, especially the execution time and scalability of the computations. However, due to the high cost and environmental issues, energy consumption has already become a very important factor that needs to be considered. The paper presents a survey of energy-aware scheduling methods used in a modern HPC environment, starting with the...
-
Performance evaluation of parallel background subtraction on GPU platforms
PublicationImplementation of the background subtraction algorithm on parallel GPUs is presented. The algorithm processes video streams and extracts foreground pixels. The work focuses on optimizing parallel algorithm implementation by taking into account specific features of the GPU architecture, such as memory access, data transfers and work group organization. The algorithm is implemented in both OpenCL and CUDA. Various optimizations of...