Filters
total: 2190
filtered: 1689
-
Catalog
Chosen catalog filters
displaying 1000 best results Help
Search results for: TIMOSHENKO BEAM THEORY
-
Genetic algorithm for fatique crack detection in Timoshenko beam.
PublicationW pracy przedstawiono metodę detekcji peknięć zmęczeniowych w początkowej fazie ich rozwoju. Algorytm detekcji wykorzystuje metodę algorytmów genetycznych połączoną z metodą gradientową. Funkcja celu oparta została o zmiany w propagujacej fali sprężystej.
-
The dynamic analysis of a cracked Timoshenko beam by the spectral element method
Publication -
Vibration of Steel–Concrete Composite Beams Using the Timoshenko Beam Model
Publication -
Wave propagation analysis in spatial frames using spectral Timoshenko beam elements in the context of damage detection
PublicationPraca poświęcona jest zjawisku propagacji fal sprężystych w trójwymiarowych układach ramowych. W ramach teorii belek Timoszenki formułuje się wielowęzłowy element belkowy klasy C0 z sześcioma inżynierskimi stopniami swobody w każdym węźle. Zakłada się, że elementy są wykonane z jednorodnego, izotropowego materiału liniowo sprężystego. Zasadniczym celem artykułu jest sformułowanie szybkiego i wydajnego schematu całkowania po czasie....
-
High frequency dynamics of an isotropic Timoshenko periodic beam by the use of the Time-domain Spectral Finite Element Method
PublicationIn this work results of numerical simulations and experimental measurements related to the high frequency dynamics of an aluminium Timoshenko periodic beam are presented. It was assumed by the authors that the source of beam structural periodicity comes from periodical alterations to its geometry due to the presence of appropriately arranged drill-holes. As a consequence of these alterations dynamic characteristics of the beam...
-
Stability analysis of nanobeams in hygrothermal environment based on a nonlocal strain gradient Timoshenko beam model under nonlinear thermal field
PublicationThis article is dedicated to analyzing the buckling behavior of nanobeam subjected to hygrothermal environments based on the principle of the Timoshenko beam theory. The hygroscopic environment has been considered as a linear stress field model, while the thermal environment is assumed to be a nonlinear stress field based on the Murnaghan model. The size-dependent effect of the nanobeam is captured by the nonlocal strain gradient...
-
On the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory
PublicationIn the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear correction factors. The equilibrium...
-
Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler–Pasternak elastic foundation using a new refined beam theory: an analytical approach
PublicationIn this article, a new refined beam theory, namely one variable first-order shear deformation theory, has been employed to study the vibration and buckling characteristics of nonlocal beam. The beam is exposed to an axial magnetic field and embedded in Winkler–Pasternak foundation. The von Kármán hypothesis along with Hamilton’s principle has been implemented to derive the governing equations for both the vibration and buckling...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublicationIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which leads to one equation similar to the Euler beam theory and also is free of any shear correction factor. The equilibrium equation has been...
-
Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order Shear Deformation Beam Theory
PublicationIn this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new obtained beam theory has only one variable which lead to one equation similar to Euler beam theory and also is free of any shear correction factor. The...
-
Effects of Surface Energy and Surface Residual Stresses on Vibro-Thermal Analysis of Chiral, Zigzag, and Armchair Types of SWCNTs Using Refined Beam Theory
PublicationIn this article, vibration characteristics of three different types of Single-Walled Carbon Nanotubes (SWCNTs) such as armchair, chiral, and zigzag carbon nanotubes have been investigated considering the effects of surface energy and surface residual stresses. The nanotubes are embedded in the elastic substrate of the Winkler type and are also exposed to low and high-temperature environments. A new refined beam theory namely, one-variable...
-
HYGRO-MAGNETIC VIBRATION OF THE SINGLE-WALLED CARBON NANOTUBE WITH NONLINEAR TEMPERATURE DISTRIBUTION BASED ON A MODIFIED BEAM THEORY AND NONLOCAL STRAIN GRADIENT MODEL
PublicationIn this study, vibration analysis of single-walled carbon nanotube (SWCNT) has been carried out by using a refined beam theory, namely one variable shear deformation beam theory. This approach has one variable lesser than a contractual shear deformation theory such as first-order shear deformation theory (FSDT) and acts like classical beam approach but with considering shear deformations. The SWCNT has been placed in an axial or...
-
Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory
PublicationThis article is devoted to investigate the stability of different types of Single Walled Carbon Nanotubes (SWCNTs) such as zigzag, chiral, and armchair types which are rested in Winkler elastic foundations exposing to both the low and high temperature environments. Also, the Surface effects which include surface energy and surface residual stresses, are taken into consideration in this study. It may be noted that the surface energy...
-
The effect of shear deformations' rotary inertia on the vibrating response of multi-physic composite beam-like actuators
PublicationIn consecutive studies on flexomagneticity (FM), this work investigates the flexomagnetic reaction of a vibrating squared multi-physic beam in finite dimensions. It is assumed that the bending and shear deformations cause rotary inertia. In the standard type of the Timoshenko beam the rotary inertia originated from shear deformations has been typically omitted. It means the rotary inertia resulting from shear deformation is a new...
-
COMPARISON OF INFINITE ELEMENT MODELS
PublicationThe main objective of this paper is to show the comparison of two models of infinite ab- sorbing layer with increasing damping in numerical investigations of elastic wave prop- agation in unbounded structures. This has been achieved by the Authors by a careful in- vestigation of two different engineering structures characterised by gradually increasing geometrical and mathematical description complexities. The analysis included...
-
The Influence of Shear Deformation in analysis of plane frames
PublicationThe focus of the paper is to investigate the influence of shear deformation effect on the distribution of internal forces and frame deformation. To estimate shear deformation effect, the Timoshenko beam theory and the concept of shear deformation coefficients are used. Analysis of example frames gives the possibility to evaluate what have the most impact on size of shear deformation and in which type of frames the shear deformation...
-
Numerical analysis of elastic wave propagation in unbounded structures
PublicationThe main objective of this paper is to show the effectiveness and usefulness of the concept of an absorbing layer with increasing damping (ALID) in numerical investigations of elastic wave propagation in unbounded engineering structures. This has been achieved by the authors by a careful investigation of three different types of structures characterised by gradually increasing geometrical and mathematical description complexities....
-
Transient response of oscillated carbon nanotubes with an internal and external damping
PublicationThe present works aims at modeling a viscoelastic nanobeam with simple boundary conditions at the two ends with the introduction of the Kelvin-Voigt viscoelasticity in a nonlocal strain gradient theory. The nanobeam lies on the visco-Pasternak matrix in which three characteristic parameters have a prominent role. A refined Timoshenko beam theory is here applied, which is only based on one unknown variable, in accordance with the...
-
Process zone in the Single Cantilever Beam under transverse loading. - Part I: Theoretical analysis
PublicationSingle Cantilever Beam (SCB) specimen loaded with a transverse force parallel to the crack front is proposed for the analysis of crack propagation phenomena under mixed mode conditions. The stress redistribution in the adhesive layer in the vicinity of the crack front so as the beam deformation are estimated using a Timoshenko beam on elastic foundation model. This model emphasizes the Mode II contribution due to flexural beam...
-
Process zone in the Single Cantilever Beam under transverse loading. - Part II: Experimental
PublicationThis paper describes an experimental arrangement to evaluate stress/strain fields in the process zone of asymmetric adhesively bonded joints. A transparent polycarbonate flexible beam was bonded to an aluminium alloy rigid block with an epoxy adhesive in a Single Cantilever Beam (SCB) configuration. The flexible adherend was loaded in the direction parallel to the initial crack front at constant rate. To monitor strains induced...
-
An isogeometric finite element formulation for geometrically exact Timoshenko beams with extensible directors
PublicationAn isogeometric finite element formulation for geometrically and materially nonlinear Timoshenko beams is presented, which incorporates in-plane deformation of the cross-section described by two extensible director vectors. Since those directors belong to the space R3, a configuration can be additively updated. The developed formulation allows direct application of nonlinear three-dimensional constitutive equations without zero...
-
Wave Method for Structural Health Monitoring: Testing Using Full-Scale Shake Table Experiment Data
PublicationAn algorithm of the wave method for structural health monitoring (SHM) is tested and calibrated using shake table experiment data of a full-scale, seven-story, reinforced-concrete building slice. The method is based on monitoring changes in the velocity of waves propagating vertically through the structure, identified by least-squares (LSQ) fit of beam models. The experiment was conducted by a team from the University of California,...
-
Flexomagneticity in buckled shear deformable hard-magnetic soft structures
PublicationThis research work performs the first time exploring and addressing the flexomagnetic property in a shear deformable piezomagnetic structure. The strain gradient reveals flexomagneticity in a magnetization phenomenon of structures regardless of their atomic lattice is symmetrical or asymmetrical. It is assumed that a synchronous converse magnetization couples both piezomagnetic and flexomagnetic features into the material structure....
-
Timoshenko.
PublicationOmówiono autobiograficzną książkę światoej sławy profesora mechaniki.
-
Kompozytowy most dla pieszych. Badania doświadczalne i przygotowanie do projektowania
PublicationDysertacja powstała w ramach grantu badawczego NCBiR, pt. „Opracowanie kompozytowych przęseł mostów dla pieszych do zastosowania nad drogami GP”, nr PBS1/B2/6/2013. Głównym celem pracy było wsparcie procesu projektowania kompozytowego mostu pieszo-rowerowego. Zakres pracy obejmuje badania doświadczalne elementów kompozytowych GFRP, walidację modeli obliczeniowych oraz wykorzystanie aparatu analizy wrażliwości do procesu projektowego....
-
Tako rzecze Timoshenko.
PublicationOmówiono autobiograficzną książkę światowej sławy profesora mechaniki.
-
Ruch wirowy wywoływany przez ultradźwięk w płynach z relaksacją
PublicationRozprawa doktorska poświęcona jest badaniu ruchu wirowego wywoływanego przez ultradźwięk w różnych modelach płynów z relaksacją. Ma ona charakter teoretyczny, jednak wykorzystanie uzyskanych dzięki niej wyników może przynieść lepsze zrozumienie ruchu wirowego wywoływanego przez siłę akustyczną. W I rozdziale rozprawy przedstawione zostały ogólne rozważania dotyczące akustyki nieliniowej. Rozdział II dotyczy ruchu wirowego wywoływanego...
-
SIMPLIFIED DYNAMIC MODEL OF ROTATING BEAM
PublicationIn the paper a hybrid model of rotating beam is presented. It was obtained by using two methods: modal decomposition and spatial discretization. Reduced modal model was built for the system without the load related to inertia forces that occur during beam rotation. This inertia load was next modeled by using the method of simply spatial discretization and combined with reduced modal model. This approach allows to obtain accurate...
-
The dynamic analysisi of cracked Thimoshenko beam by the spectral element method.
PublicationW pracy przedstawiono model belli Timoshenko z pęknięciem poprzecznym oparty o metodę elementów spektralnych. Przedstawiono wyniki propagacji fali sprężystej i jej interakcję z pęknięciem.
-
Enriched buckling for beam-lattice metamaterials
PublicationWe discuss two examples of beam-lattice metamaterials which show attractive mechanical properties concerning their enriched buckling. The first one considers pantographic beams and the nonlinear solution is traced out numerically on the base of a Hencky’s model and an algorithm based on Riks’ arc-length scheme. The second one concerns a beam-lattice with sliders and the nonlinear solution is discussed in analytic way and, finally,...
-
Energy efficient beam control for 5G antennas
PublicationThe rapid development of 5G and beyond systems demands improvement in communication speed, latency and safety to maintain the required quality of service. This paper presents an overview of different concepts of energy-efficient antenna systems, which offer beam-shaping and beam-steering functionalities, that enhance connectivity performance and can be used in 5G applications. Different designs for 5.9 GHz, 39 GHz and 60 GHz frequency...
-
A three-dimensional periodic beam for vibroacoustic isolation purposes
PublicationThis paper presents results of investigations on a three-dimensional (3-D) isotropic periodic beam. The beam can represent a vibroacoustic isolator of optimised dynamic characteristics in the case of its longitudinal, flexural and torsional behaviour. The optimisation process concerned both the widths as well as the positions of particular frequency band gaps that are present in the frequency spectrum of the beam. Since the dynamic...
-
A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition
PublicationA drawback to the material composition of thick functionally graded materials (FGM) beams is checked out in this research in conjunction with a novel hyperbolic‐polynomial higher‐order elasticity beam theory (HPET). The proposed beam model consists of a novel shape function for the distribution of shear stress deformation in the transverse coordinate. The beam theory also incorporates the stretching effect to present an indirect...
-
Distorsional analysis of I-section beam
PublicationAn elastic stiffness matrix was derived in the case of distortion of a restrained thin-walled I-section beam using the minimum total stationary elastic energy condition. The function describing the angle of distortion was adopted form the solution of differential equation in the case of restrained distortion. The example presented in the paper helps to assess the correctness of the proposed solution. The proposed elastic stiffness...
-
3-D Printable Metal-Dielectric Metasurface for Risley Prism-Based Beam-Steering Antennas
PublicationA 3-D printable, planar, metal-dielectric metasurface-based, 2-D beam-steering system for aperture-type antennas is presented in this paper. This beam steering system, also known as the near-field meta-steering system, comprises two fully passive phase-gradient metasurfaces placed in the antenna’s nearfield region to steer the radiation beam. To address the non-uniform electric field phase of the aperture antenna, phase correction...
-
Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory
PublicationIn this paper, the damped forced vibration of single-walled carbon nanotubes (SWCNTs) is analyzed using a new shear deformation beam theory. The SWCNTs are modeled as a flexible beam on the viscoelastic foundation embedded in the thermal environment and subjected to a transverse dynamic load. The equilibrium equations are formulated by the new shear deformation beam theory which is accompanied with higher-order nonlocal strain...
-
Azimuth estimator for a rotating array radar with wide beam
PublicationThe problem of estimating azimuth in rotating array radar with a beam, wide in the azimuth plane, is considered. Under such setup the echo signal usually has a very low signal to noise ratio, but the number of observations is large, because of long dwell times. The proposed solution is based on the maximum likelihood approach, but it employs simplifications which facilitate its implementation in real time systems. Results, obtained...
-
On Applications of Fractional Derivatives in Circuit Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are discussed from the point of view of applications in the circuit theory. The properties of FO derivatives required for the circuit-level modelling are formulated. Potential problems related to the generalization of transmission line equations with the use of FO derivatives are presented. It is demonstrated that some of formulations of the FO derivatives have limited...
-
GPR simulations for diagnostics of a reinforced concrete beam
PublicationThe most popular technique for modelling of an electromagnetic field, the finite difference time domain (FDTD) method, has recently become a popular technique as an interpretation tool for ground penetrating radar (GPR) measurements. The aim of this study is to detect the size and the position of damage in a reinforced concrete beam using GPR maps. Numerical simulations were carried out using the finite differ-ence time domain...
-
Thermal self-action effects of acoustic beam in a vibrationally relaxing gas
PublicationThermal self-action of acoustic beam in a molecular gas with excited internal degrees of molecules’ freedom, is studied. This kind of thermal self-action differs from that in a Newtonian fluid. Heating or cooling of a medium takes place due to transfer of internal vibrational energy. Equilibrium and non-equilibrium gases, which may be acoustically active, are considered. A beam in an acoustically active gas is self-focusing unlike...
-
On Applications of Fractional Derivatives in Electromagnetic Theory
PublicationIn this paper, concepts of fractional-order (FO) derivatives are analysed from the point of view of applications in the electromagnetic theory. The mathematical problems related to the FO generalization of Maxwell's equations are investigated. The most popular formulations of the fractional derivatives, i.e., Riemann-Liouville, Caputo, Grünwald-Letnikov and Marchaud definitions, are considered. Properties of these derivatives are...
-
Direction-of-Arrival Estimation Using an ESPAR Antenna with Simplified Beam Steering
PublicationIn this paper, it has been shown, how electronically steerable parasitic array radiator (ESPAR) antenna, in which beam steering is done in a simple way, can be used for directionof- arrival (DoA) estimation of an unknown signal impinging the antenna. The concept is based on an ESPAR antenna having twelve parasitic elements, in which beam switching is realized by RF switches providing required loads to its parasitic elements. Numerical...
-
Modelling and analysis of beam/bar structure by application of bond graphs
PublicationThe paper presents an uniform, port-based approach to modelling of beam/bar systems (trusses). Port-based model of such distributed parameter system has been defined by application of the bond graph methodology and the distributed transfer function method (DTFM). The proposed method of modelling enables to formulate input data for computer analysis by application of the DTFM. The constructed computational package enables the frequency...
-
Split-Beam Echosounder Data from Puck Bay
PublicationThe acoustic data was collected in 2018–2019 in the Bay of Puck in the seasons: autumn, winter, spring. The data was collected during the day and night using three split-beam echosounders with frequencies of 38 kHz, 120 kHz and 333 kHz at a designated study area not far from the city of Hel, while the ship was sailing. To ensure data quality, the echosounders were calibrated and passive noise was measured.
-
About Unusual Diffraction and Thermal Self-Action of Magnetosonic Beam
PublicationThe dynamics of slightly diverging two-dimensional beams whose direction forms a constant angle θ with the equilibrium straight magnetic strength is considered. The approximate dispersion relations and corresponding links which specify hydrodynamic perturbations in confined beams are derived. The study is dedicated to the diffraction of a magnetosonic beam and nonlinear thermal self-action of a beam in a thermoconducting gaseous plasma....
-
Module structure in Conley theory with some applications
PublicationA multiplicative structure in the cohomological versjon of Conley index is described . In the case of equivariant flows we apply the normalization procedure known from equivariant degree theory and we propose a new continuation invariant. The theory is then applied to obtain a mountain pass type theorem. Another application is a result on multiple bifurcations for some elliptic PDE.
-
Experimental and numerical analysis of an aluminum cantilevered beam with polymer adhesive
PublicationIn this paper, experimental and numerical investigation on a composite cantilevered aluminum beam has been conducted. The subject of the study consists of two plain aluminum elements bonded with polymer adhesive of different thickness. It has been proven in the previous study that this kind of material has high damping properties. During an experimental investigation, value of damping ratios have been obtained. The aim of a numerical...
-
Implementation of Non-Probabilistic Methods for Stability Analysis of Nonlocal Beam with Structural Uncertainties
PublicationIn this study, a non-probabilistic approach based Navier’s Method (NM) and Galerkin Weighted Residual Method (GWRM) in term of double parametric form has been proposed to investigate the buckling behavior of Euler-Bernoulli nonlocal beam under the framework of the Eringen's nonlocal elasticity theory, considering the structural parameters as imprecise or uncertain. The uncertainties in Young’s modulus and diameter of the beam are...
-
The influence of reinforcement on load carrying capacity and cracking of the reinforced concrete deep beam joint
PublicationThe paper presents the results of experimental research of the spatial reinforced concrete deep beam systems orthogonally reinforced and with additional inclined bars. Joint of the deep beams in this research was composed of the longitudinal deep beam with a cantilever suspended at the transversal deep beam. The cantilever deep beam was loaded throughout the depth and the transversal deep beam was loaded at the mid-span by longitudinal...
-
Modelling of the Heat Flux Density Distribution for Laser Beam Welding
PublicationGreat interest of the laser beam welding in industry is a new theoretical task, making planning the welding procedure specification and the quality control of welded joints easier. Estimating and calculating the dimensions of a weld pool and temperature distribution near weld mainly concern heat source modelling. In the presented work calculations of welding pool shape and thermal field for cylindrical-powered-normally model of...