Filters
total: 845
filtered: 716
Search results for: defensive sets in graphs
-
Global defensive sets in graphs
PublicationIn the paper we study a new problem of finding a minimum global defensive set in a graph which is a generalization of the global alliance problem. For a given graph G and a subset S of a vertex set of G, we define for every subset X of S the predicate SEC ( X ) = true if and only if | N [ X ] ∩ S | ≥ | N [ X ] \ S | holds, where N [ X ] is a closed neighbourhood of X in graph G. A set S is a defensive alliance if and only if for...
-
Cops, a fast robber and defensive domination on interval graphs
PublicationThe game of Cops and ∞-fast Robber is played by two players, one controlling c cops, the other one robber. The players alternate in turns: all the cops move at once to distance at most one each, the robber moves along any cop-free path. Cops win by sharing a vertex with the robber, the robber by avoiding capture indefinitely. The game was proposed with bounded robber speed by Fomin et al. in “Pursuing a fast robber on a graph”,...
-
Super Dominating Sets in Graphs
PublicationIn this paper some results on the super domination number are obtained. We prove that if T is a tree with at least three vertices, then n2≤γsp(T)≤n−s, where s is the number of support vertices in T and we characterize the extremal trees.
-
Mobile mutual-visibility sets in graphs
PublicationGiven a connected graph G, the mutual-visibility number of G is the cardinality of a largest set S such that for every pair of vertices x, y ∈ S there exists a shortest x, y-path whose interior vertices are not contained in S. Assume that a robot is assigned to each vertex of the set S. At each stage, one robot can move to a neighbouring vertex. Then S is a mobile mutual-visibility set of G if there exists a sequence of moves of...
-
On proper (1,2)‐dominating sets in graphs
PublicationIn 2008, Hedetniemi et al. introduced the concept of (1,)-domination and obtained some interesting results for (1,2) -domination. Obviously every (1,1) -dominating set of a graph (known as 2-dominating set) is (1,2) -dominating; to distinguish these concepts, we define a proper (1,2) -dominating set of a graph as follows: a subset is a proper (1,2) -dominating set of a graph if is (1,2) -dominating and it is not a (1,1) -dominating...
-
Musical Metadata Retrieval with Flow Graphs, in Rough Sets and Current Trends in Computing.
PublicationW pracy opisano metody wyszukiwania muzyki w Internecie w oparciu o opis semantyczny. W eksperymentach wykorzystano opis muzyczny stosowany w bazie CDDB. Zaprezentowano metodę grafów przepływowych zaproponowaną przez Pawlaka.
-
Modele i algorytmy dla grafowych struktur defensywnych
PublicationW niniejszej pracy przeprowadzono analizę złożoności istnienia struktur defensywnych oraz równowag strategicznych w grafach. W przypadku struktur defensywnych badano modele koalicji defensywnych, zbiorów defensywnych i koalicji krawędziowych – każdy z nich w wersji globalnej, tj. z wymogiem dominacji całego grafu. W przypadku modeli równowagi strategicznej badano równowagę strategiczną koalicji defensywnych, równowagę strategiczną...
-
Global defensive secure structures
PublicationLet S ⊂ V (G) for a given simple non-empty graph G. We define for any nonempty subset X of S the predicate SECG,S(X) = true iff |NG[X]∩S| ≥ |NG[X]\S|. Let H be a non-empty family of graphs such that for each vertex v ∈ V (G) there is a subgraph H of G containing v and isomorphic to a member of H. We introduce the concept of H-alliance extending the concept of global defensive secure structures. By an H-alliance in a graph G we...
-
Global edge alliances in graphs
PublicationIn the paper we introduce and study a new problem of finding a minimum global edge alliance in a graph which is related to the global defensive alliance (Haynes et al., 2013; Hedetniemi, 2004) and the global defensive set (Lewoń et al., 2016). We proved the NP-completeness of the global edge alliance problem for subcubic graphs and we constructed polynomial time algorithms for trees. We found the exact values of the size of the...
-
Reconfiguring Minimum Dominating Sets in Trees
PublicationWe provide tight bounds on the diameter of γ-graphs, which are reconfiguration graphs of the minimum dominating sets of a graph G. In particular, we prove that for any tree T of order n ≥ 3, the diameter of its γ-graph is at most n/2 in the single vertex replacement adjacency model, whereas in the slide adjacency model, it is at most 2(n − 1)/3. Our proof is constructive, leading to a simple linear-time algorithm for determining...
-
Eqiuitable coloring of corona products of cubic graphs is harder than ordinary coloring
PublicationA graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G. In this paper the problem of determinig the equitable coloring number for coronas of cubic graphs is studied. Although the problem of ordinary coloring of coronas...
-
Strategic balance in graphs
PublicationFor a given graph G, a nonempty subset S contained in V ( G ) is an alliance iff for each vertex v ∈ S there are at least as many vertices from the closed neighbourhood of v in S as in V ( G ) − S. An alliance is global if it is also a dominating set of G. The alliance partition number of G was defined in Hedetniemi et al. (2004) to be the maximum number of sets in a partition of V ( G ) such that each set is an alliance. Similarly,...
-
On the super domination number of lexicographic product graphs
PublicationThe neighbourhood of a vertexvof a graphGis the setN(v) of all verticesadjacent tovinG. ForD⊆V(G) we defineD=V(G)\D. A setD⊆V(G) is called a super dominating set if for every vertexu∈D, there existsv∈Dsuch thatN(v)∩D={u}. The super domination number ofGis theminimum cardinality among all super dominating sets inG. In this article weobtain closed formulas and tight bounds for the super dominating number oflexicographic product...
-
Dynamic F-free Coloring of Graphs
PublicationA problem of graph F-free coloring consists in partitioning the vertex set of a graph such that none of the resulting sets induces a graph containing a fixed graph F as an induced subgraph. In this paper we consider dynamic F-free coloring in which, similarly as in online coloring, the graph to be colored is not known in advance; it is gradually revealed to the coloring algorithm that has to color each vertex upon request as well...
-
Double bondage in graphs
PublicationA vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G, denoted by gamma_d(G), is the minimum cardinality of a double dominating set of G. The double bondage number of G, denoted by b_d(G), is the minimum cardinality among all sets...
-
Domination-Related Parameters in Rooted Product Graphs
PublicationAbstract A set S of vertices of a graph G is a dominating set in G if every vertex outside of S is adjacent to at least one vertex belonging to S. A domination parameter of G is related to those sets of vertices of a graph satisfying some domination property together with other conditions on the vertices of G. Here, we investigate several domination-related parameters in rooted product graphs.
-
Polynomial Algorithm for Minimal (1,2)-Dominating Set in Networks
PublicationDominating sets find application in a variety of networks. A subset of nodes D is a (1,2)-dominating set in a graph G=(V,E) if every node not in D is adjacent to a node in D and is also at most a distance of 2 to another node from D. In networks, (1,2)-dominating sets have a higher fault tolerance and provide a higher reliability of services in case of failure. However, finding such the smallest set is NP-hard. In this paper, we...
-
Computational aspects of greedy partitioning of graphs
PublicationIn this paper we consider a variant of graph partitioning consisting in partitioning the vertex set of a graph into the minimum number of sets such that each of them induces a graph in hereditary class of graphs P (the problem is also known as P-coloring). We focus on the computational complexity of several problems related to greedy partitioning. In particular, we show that given a graph G and an integer k deciding if the greedy...
-
2-bondage in graphs
PublicationA 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The 2-bondage number of G, denoted by b_2(G), is the minimum cardinality among all sets of edges E' subseteq E such that gamma_2(G-E') > gamma_2(G). If for every E' subseteq E we have...
-
Deterministic Rendezvous in Restricted Graphs
PublicationIn this paper we consider the problem of synchronous rendezvous in which two anonymous mobile entities (robots) A and B are expected to meet at the same time and point in a graph G = (V;E). Most of the work devoted to rendezvous in graphs assumes that robots have access to the same sets of nodes and edges, where the topology of connections may be initially known or unknown. In our work we assume the movement of robots is restricted...
-
Application of Doubly Connected Dominating Sets to Safe Rectangular Smart Grids
PublicationSmart grids, together with the Internet of Things, are considered to be the future of the electric energy world. This is possible through a two-way communication between nodes of the grids and computer processing. It is necessary that the communication is easy and safe, and the distance between a point of demand and supply is short, to reduce the electricity loss. All these requirements should be met at the lowest possible cost....
-
On Computational Aspects of Greedy Partitioning of Graphs
PublicationIn this paper we consider a problem of graph P-coloring consisting in partitioning the vertex set of a graph such that each of the resulting sets induces a graph in a given additive, hereditary class of graphs P. We focus on partitions generated by the greedy algorithm. In particular, we show that given a graph G and an integer k deciding if the greedy algorithm outputs a P-coloring with a least k colors is NP-complete for an infinite...
-
Non-isolating bondage in graphs
PublicationA dominating set of a graph $G = (V,E)$ is a set $D$ of vertices of $G$ such that every vertex of $V(G) \setminus D$ has a neighbor in $D$. The domination number of a graph $G$, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G$. The non-isolating bondage number of $G$, denoted by $b'(G)$, is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G-E') \ge 1$ and $\gamma(G-E')...
-
Non-isolating 2-bondage in graphs
PublicationA 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The non-isolating 2-bondage number of G, denoted by b_2'(G), is the minimum cardinality among all sets of edges E' subseteq E such that delta(G-E') >= 1 and gamma_2(G-E') > gamma_2(G)....
-
Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph
PublicationA vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...
-
Matrix elements for spin-orbit couplings in KRb
PublicationIn response to the need to investigate and create a reliable dataset of spin-orbit coupling matrix elements, we have extended our recent work in which we presented results for the potential energy curves and permanent and transition dipole moments in KRb. This paper presents 190 allowed spin-orbit couplings between 30 singlet and triplet +, , and electronic states of the KRb molecule. These results are crucial for accurately interpreting...
-
angielski
PublicationA subset D of V (G) is a dominating set of a graph G if every vertex of V (G) − D has at least one neighbour in D; let the domination number γ(G) be the minimum cardinality among all dominating sets in G. We say that a graph G is γ-q-critical if subdividing any q edges results in a graph with domination number greater than γ(G) and there exists a set of q − 1 edges such that subdividing these edges results in a graph with domination...
-
Renovation works in buildings in the area of former defensive fortifications
Publicationhe paperpresents the Complex of Buildings which was created in Gdańsk as a result of the reconstruction and development of the remains of the defensive fortifications of Redita Napoleońska. Some of the buildings of the Building Complex, after many years of operation, were in an emergency condition and required urgent renovation and repair work. The papercontains a detailed analysis of the technicalcondition of individual...
-
Total Domination Versus Domination in Cubic Graphs
PublicationA dominating set in a graph G is a set S of vertices of G such that every vertex not in S has a neighbor in S. Further, if every vertex of G has a neighbor in S, then S is a total dominating set of G. The domination number,γ(G), and total domination number, γ_t(G), are the minimum cardinalities of a dominating set and total dominating set, respectively, in G. The upper domination number, \Gamma(G), and the upper total domination...
-
Dynamic coloring of graphs
PublicationDynamics is an inherent feature of many real life systems so it is natural to define and investigate the properties of models that reflect their dynamic nature. Dynamic graph colorings can be naturally applied in system modeling, e.g. for scheduling threads of parallel programs, time sharing in wireless networks, session scheduling in high-speed LAN's, channel assignment in WDM optical networks as well as traffic scheduling. In...
-
Minimal 2-dominating sets in Trees
PublicationWe provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time O(1.3247^n). This leads to that every tree has at most 1.3247^n minimal 2-dominating sets. We also show that thisbound is tight.
-
Some variations of perfect graphs
PublicationWe consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) =γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k -path vertex cover number and the distance (k−1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k≥2. Moreover, we provide a complete characterisation of (ψ2−γ1)-perfect graphs describing the set of its forbidden induced subgraphs and providing...
-
Minimal double dominating sets in trees
PublicationWe provide an algorithm for listing all minimal double dominating sets of a tree of order $n$ in time $\mathcal{O}(1.3248^n)$. This implies that every tree has at most $1.3248^n$ minimal double dominating sets. We also show that this bound is tight.
-
Independent Domination Subdivision in Graphs
PublicationA set $S$ of vertices in a graph $G$ is a dominating set if every vertex not in $S$ is adjacent to a vertex in~$S$. If, in addition, $S$ is an independent set, then $S$ is an independent dominating set. The independent domination number $i(G)$ of $G$ is the minimum cardinality of an independent dominating set in $G$. The independent domination subdivision number $\sdi(G)$ is the minimum number of edges that must be subdivided (each...
-
Trees having many minimal dominating sets
PublicationWe provide an algorithm for listing all minimal dominating sets of a tree of order n in time O(1.4656^n). This leads to that every tree has at most 1.4656^n minimal dominating sets. We also give an infinite family of trees of odd and even order for which the number of minimal dominating sets exceeds 1.4167^n, thus exceeding 2^{n/2}. This establishes a lower bound on the running time of an algorithm for listing all minimal dominating...
-
Interval incidence coloring of bipartite graphs
PublicationIn this paper we study the problem of interval incidence coloring of bipartite graphs. We show the upper bound for interval incidence coloring number (χii) for bipartite graphs χii≤2Δ, and we prove that χii=2Δ holds for regular bipartite graphs. We solve this problem for subcubic bipartite graphs, i.e. we fully characterize the subcubic graphs that admit 4, 5 or 6 coloring, and we construct a linear time exact algorithm for subcubic...
-
Some Progress on Total Bondage in Graphs
PublicationThe total bondage number b_t(G) of a graph G with no isolated vertex is the cardinality of a smallest set of edges E'⊆E(G) for which (1) G−E' has no isolated vertex, and (2) γ_t(G−E')>γ_t(G). We improve some results on the total bondage number of a graph and give a constructive characterization of a certain class of trees achieving the upper bound on the total bondage number.
-
Algorithms for testing security in graphs
PublicationIn this paper we propose new algorithmic methods giving with the high probability the correct answer to the decision problem of security in graphs. For a given graph G and a subset S of a vertex set of G we have to decide whether S is secure, i.e. every subset X of S fulfils the condition: |N[X] \cap S| >= |N[X] \ S|, where N[X] is a closed neighbourhood of X in graph G. We constructed a polynomial time property pseudotester based...
-
On-line P-coloring of graphs
PublicationFor a given induced hereditary property P, a P-coloring of a graph G is an assignment of one color to each vertex such that the subgraphs induced by each of the color classes have property P. We consider the effectiveness of on-line P-coloring algorithms and give the generalizations and extensions of selected results known for on-line proper coloring algorithms. We prove a linear lower bound for the performance guarantee function...
-
A note on total reinforcement in graphs
PublicationIn this note we prove a conjecture and inprove some results presendet in a recent paper of N. Sridharan, M.D. Elias, V.S.A. Subramanian, Total reinforcement number of a graph, AKCE Int. J. Graphs Comb. 4 (2) (2007) 197-202.
-
On the metric dimension of corona product graphs
PublicationWe give several results on the metric dimension of corona product graphs.
-
Formulating a defensive technique to prevent the threat of prohibited reverse engineering
Publication -
Edge and Pair Queries-Random Graphs and Complexity
PublicationWe investigate two types of query games played on a graph, pair queries and edge queries. We concentrate on investigating the two associated graph parameters for binomial random graphs, and showing that determining any of the two parameters is NP-hard for bounded degree graphs.
-
Colorings of the Strong Product of Circulant Graphs
PublicationGraph coloring is one of the famous problems in graph theory and it has many applications to information theory. In the paper we present colorings of the strong product of several circulant graphs.
-
Bondage number of grid graphs
PublicationThe bondage number b(G) of a nonempty graph G is the cardinality of a smallest set of edges whose removal from G results in a graph with domination number greater than the domination number of G. Here we study the bondage number of some grid-like graphs. In this sense, we obtain some bounds or exact values of the bondage number of some strong product and direct product of two paths.
-
An Algorithm for Listing All Minimal 2-Dominating Sets of a Tree
PublicationWe provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time O(1.3248n) . This implies that every tree has at most 1.3248 n minimal 2-dominating sets. We also show that this bound is tigh.
-
2-outer-independent domination in graphs
PublicationWe initiate the study of 2-outer-independent domination in graphs. A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)\D has at least two neighbors in D, and the set V(G)\D is independent. The 2-outer-independent domination number of a graph G is the minimum cardinality of a 2-outer-independent dominating set of G. We show that if a graph has minimum degree at least two,...
-
An algorithm for listing all minimal double dominating sets of a tree
PublicationWe provide an algorithm for listing all minimal double dominating sets of a tree of order $n$ in time $\mathcal{O}(1.3248^n)$. This implies that every tree has at most $1.3248^n$ minimal double dominating sets. We also show that this bound is tight.
-
Evolutionary Sets of Safe Ship Trajectories: Evaluation of Individuals
PublicationThe paper presents a description of the evaluation phase of the Evolutionary Sets of Safe Ship Trajectories method. In general, the Evolutionary Sets of Safe Ship Trajectories method combines some of the assumptions of game theory with evolutionary programming and finds an optimal set of cooperating trajectories of all ships involved in an encounter situation. While developing a new version of this method, the authors decided to...
-
Edge coloring of graphs of signed class 1 and 2
PublicationRecently, Behr (2020) introduced a notion of the chromatic index of signed graphs and proved that for every signed graph (G, σ) it holds that ∆(G) ≤ χ′(G,σ) ≤ ∆(G) + 1, where ∆(G) is the maximum degree of G and χ′ denotes its chromatic index. In general, the chromatic index of (G, σ) depends on both the underlying graph G and the signature σ. In the paper we study graphs G for which χ′(G, σ) does not depend on σ. To this aim we...