Search results for: machine learning algorithmsupervised learningfracture loadfracture toughnessdata-driven techniquesprediction model
-
Proportional-Derivative and Model-based Controllers used for a Serial Type Manipulator in case of a Variable Mass Payload
PublicationIn the paper, numerical analysis of dynamics of a variable mass system is considered. Its reference example is a serial-like manipulator composed of revolute joints and rigid bodies. Payload of its gripper is considered as its variable mass element (mass and inertia irregularly between subsequent payloads). For the rest of the system, inertia parameters are considered as known (precisely identified during the assembling process)....
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublicationSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublicationFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
Design-Oriented Two-Stage Surrogate Modeling of Miniaturized Microstrip Circuits with Dimensionality Reduction
PublicationContemporary microwave design heavily relies on full-wave electromagnetic (EM) simulation tools. This is especially the case for miniaturized devices where EM cross-coupling effects cannot be adequately accounted for using equivalent network models. Unfortunately, EM analysis incurs considerable computational expenses, which becomes a bottleneck whenever multiple evaluations are required. Common simulation-based design tasks include...
-
Modelling and Control of a Brushless Multiphase Doubly-Fed Induction Generator in a Stand-Alone Wind Generation System
PublicationThe development of the novel multiphase brushless doubly-fed generator system and voltage controller for stand-alone mode configuration is proposed in this paper. The generator system is based on the new machine construction with multiphase control winding and traditional three-phase power winding. The dynamic model of multiphase brushless doubly-fed generator is presented, and the control strategy for voltage amplitude and frequency...
-
Exploring Neural Networks for Musical Instrument Identification in Polyphonic Audio
PublicationThe purpose of this paper is to introduce neural network-based methods that surpass state-of-the-art (SOTA) models, either by training faster or having simpler architecture, while maintaining comparable effectiveness in musical instrument identification in polyphonic music. Several approaches are presented, including two authors’ proposals, i.e., spiking neural networks (SNN) and a modular deep learning model named FMCNN (Fully...
-
DOROTKA, czyli Doskonalenie Organizacji, ROzwoju oraz Tworzenia Kursów Akademickich przez Internet.
PublicationW artykule zaprezentowano dedykowaną platformę wspierającą kształcenie na odległość opracowaną i uruchomioną w ramach projektu Leonardo da Vinci TeleCAD (Teleworkers Training for CAD System Users, 1998-2001), wykorzystywaną w latach 2000-2003 do wspomagania przedmiotu Podstawy Informatyki na Wydziale Inżynierii Lądowej Politechniki Gdańskiej. Przedstawiono również, bazujący na wieloletnich doświadczeniach, model DOROTKA (Doskonalenie...
-
Optical glyphs based localization and identification system
PublicationThe paper presents a description of functioning of a platform supporting the detection of obstructive diseases in the respiratory system education process. A 16-parameter model of the respiratory system simulated in the MATLAB/Simulink environment was set in the role of the tested patient. It has been linked to the control layer, developed in the LabVIEW environment, using the SIT library (Simulation Interface Toolkit). This layer...
-
An application supporting the educational process of the respiratory system obstructive diseases detection
PublicationThe paper presents a description of functioning of a platform supporting the detection of obstructive diseases in the respiratory system education process. A 16-parameter model of the respiratory system simulated in the MATLAB/Simulink environment was set in the role of the tested patient. It has been linked to the control layer, developed in the LabVIEW environment, using the SIT library (Simulation Interface Toolkit). This layer...
-
Influence of Escherichia coli on Expression of Selected Human Drug Addiction Genes
PublicationThe impact of enteric microflora on the expression of genes associated with cocaine and amphetamine addiction was described. Human genome-wide experiments on RNA transcripts expressed in response to three selected Escherichia coli strains allowed for significant alteration (p > 0.05) of the linear regression model between HT-29 RNA transcripts associated with the KEGG pathway:hsa05030:Cocaine addiction after 3 h stimulation with...
-
Prediction of Overall In Vitro Microsomal Stability of Drug Candidates Based on Molecular Modeling and Support Vector Machines. Case Study of Novel Arylpiperazines Derivatives
PublicationOther than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model...
-
Cost-Efficient Globalized Parameter Optimization of Microwave Components through Response-Feature Surrogates and Nature-Inspired Metaheuristics
PublicationDesign of contemporary microwave devices predominantly utilizes computational models, including both circuit simulators, and full-wave electromagnetic (EM) evaluation. The latter constitutes the sole generic way of rendering accurate assessment of the system outputs that considers phenomena such as cross-coupling or radiation and dielectric losses. Consequently, for reliability reasons, the final tuning of microwave device parameters...
-
Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier
PublicationIn recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....
-
Fast surrogate-assisted simulation-driven design of compact microwave hybrid couplers
PublicationThis work presents a robust methodology for expedited simulation-driven design optimization of compact microwave hybrid couplers. The technique relies on problem decomposition, and a bot-tom–up design strategy, starting from the level of basic building blocks of the coupler, and finishing with a tuning procedure that exploits a fast surrogate model of the entire structure. The latter is constructed by cascading local response surface...
-
The lemniscate knowledge flow model
PublicationKnowledge is seen as one of the main resources for organizations providing knowledge-intensive services. Therefore, sharing and reusing are the main goals of modern knowledge management (KM) approach, driven by information and communication technologies (ICT). However, one can ask for the details in order to provide means and tools to design and deploy environment able to fulfil these two goals. We observed that occurred interactions...
-
Reliable low-cost surrogate modeling and design optimisation of antennas using implicit space mapping with substrate segmentation
PublicationAbstract: In this work, a reliable methodology for fast simulation-driven design optimisation of antenna structures is proposed. The authors’ approach exploits implicit space mapping (ISM) technology. To adopt it for handling antenna structures, they introduce substrate segmentation with separate dielectric permittivity value assigned for each segment as ISM preassigned parameters. At the same time, the coarse model for space mapping...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublicationCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
Triangulation-based Constrained Surrogate Modeling of Antennas
PublicationDesign of contemporary antenna structures is heavily based on full-wave electromagnetic (EM) simulation tools. They provide accuracy but are CPU-intensive. Reduction of EM-driven design procedure cost can be achieved by using fast replacement models (surrogates). Unfortunately, standard modeling techniques are unable to ensure sufficient predictive power for real-world antenna structures (multiple parameters, wide parameter ranges,...
-
Opracowanie metodologii rozpoznawania i klasyfikowania emocji w filmach przy użyciu sztucznych sieci neuronowych
PublicationCelem rozprawy doktorskiej jest opracowanie metodologii pozwalającej na rozpoznawanie i klasyfikację emocji w filmie za pomocą sztucznych sieci neuronowych. W pracy przedstawiono tematykę związaną z kolorowaniem sceny filmowej w kontekście oddziaływania koloru na emocje widza. W celu analizy wpływu filmow na emocje widza dokonano wyboru tytułow filmowych, następnie przeprowadzono szereg wstępnych testow subiektywnych pozwalających...
-
Losses and energy efficiency of drive motors and systems
PublicationLosses and energy efficiency of every drive motor must be presented as functions of physical quantities independent of losses in the motor. Such quantities are speed and load required by the machine or device driven by the motor, changing in the drive operating field. Speed and load of the motor decide of the instantaneous useful power of the motor and also in a differentiated way of kinds and values of losses occurring in the...
-
Losses and energy efficiency of drive motors and systems
PublicationLosses and energy efficiency of every drive motor must be presented as functions of physical quantities independent of losses in the motor. Such quantities are speed and load required by the machine or device driven by the motor, changing in the drive operating field. Speed and load of the motor decide of the instantaneous useful power of the motor and also in a differentiated way of kinds and values of losses occurring in the...
-
Empirical analysis of tree-based classification models for customer churn prediction
PublicationCustomer churn is a vital and reoccurring problem facing most business industries, particularly the telecommunications industry. Considering the fierce competition among telecommunications firms and the high expenses of attracting and gaining new subscribers, keeping existing loyal subscribers becomes crucial. Early prediction of disgruntled subscribers can assist telecommunications firms in identifying the reasons for churn and...
-
Hospitality Human Capital process model in crisis management: Managing human capital and revealing employees’ hidden capabilities
PublicationAs the hospitality industry is highly human-dependent, proper Human Capital management is crucial for responding to these challenges and becoming resilient in the long-term perspective. This study aims to verify the Value-Driven Process Model of Hospitality Human Capital management in the context of Crisis Management in restaurant SMEs, which is an underresearched part of the industry. The authors adjust the model by Young et al....
-
Insights into the flow characteristics during hydraulic fracturing
PublicationThis paper presents a numerical model to study fracture propagation during water-based hydraulic fracturing. To address the computational challenges associated with the numerical model, the proposed approach employs a set of overlapping spheres arranged in a monolayer to construct a porous specimen containing pre-existing cracks. The fluid-filled cracks represent various stages of initiation and propagation of fluid-driven fracture....
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublicationSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Revisiting the estimation of cutting power with different energetic methods while sawing soft and hard woods on the circular sawing machine: a Central European case
PublicationIn the classical approaches, used in Central Europe in practice, cutting forces and cutting power in sawing processes of timber are commonly computed by means of the specific cutting resistance kc. It needs to be highlighted that accessible sources in handbooks and the scientific literature do not provide any data about wood provenance, nor about cutting conditions, in which cutting resistance has been empirically determined. In...
-
Game theory-based virtual machine migration for energy sustainability in cloud data centers
PublicationAs the demand for cloud computing services increases, optimizing resource allocation and energy consumption has become a key factor in achieving sustainability in cloud environments. This paper presents a novel approach to address these challenges through an optimized virtual machine (VM) migration strategy that employs a game-theoretic approach based on particle swarm optimization (PSO) (PSO-GTA). The proposed approach leverages...
-
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
PublicationIonic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublicationFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...
-
A Robust Random Forest Model for Classifying the Severity of Partial Discharges in Dielectrics
PublicationPartial Discharges (PDs) are a common source of degradation in electrical assets. It is essential that the extent of the deterioration level of insulating medium is correctly identified, to optimize maintenance schedules and prevent abrupt power outages. Temporal PD signals received from damaged insulation, collected through the IEC-60270 method is the gold standard for PD detection. Temporal signals may be transformed to the frequency...
-
Resource productivity and environmental degradation in EU-27 countries: context of material footprint
PublicationThis study explores the relationship between the resource productivity and environmental degradation in European Union-27 countries. This study tests this relationship in context of high, moderate, and low material footprint sub-samples; these samples are formed utilizing the expectation–maximization machine learning algorithm. Using the panel data set of EU-27 countries from 2000 to 2020, linear and non-linear autoregressive distributed...
-
Rapid Multi-Criterial Antenna Optimization by Means of Pareto Front Triangulation and Interpolative Design Predictors
PublicationModern antenna systems are designed to meet stringent performance requirements pertinent to both their electrical and field properties. The objectives typically stay in conflict with each other. As the simultaneous improvement of all performance parameters is rarely possible, compromise solutions have to be sought. The most comprehensive information about available design trade-offs can be obtained through multi-objective optimization...
-
Computational Methods for Liver Vessel Segmentation in Medical Imaging: A Review
PublicationThe segmentation of liver blood vessels is of major importance as it is essential for formulating diagnoses, planning and delivering treatments, as well as evaluating the results of clinical procedures. Different imaging techniques are available for application in clinical practice, so the segmentation methods should take into account the characteristics of the imaging technique. Based on the literature, this review paper presents...
-
Remote measurement of building usable floor area - Algorithms fusion
PublicationRapid changes that are taking place in the urban environment have significant impact on urban growth. Most cities and urban regions all over the world compete to increase resident and visitor satisfaction. The growing requirements and rapidity of introducing new technologies to all aspects of residents' lives force cities and urban regions to implement "smart cities" concepts in their activities. Real estate is one of the principal...
-
Adaptive Positioning Systems Based on Multiple Wireless Interfaces for Industrial IoT in Harsh Manufacturing Environments
PublicationAs the industrial sector is becoming ever more flexible in order to improve productivity, legacy interfaces for industrial applications must evolve to enhance efficiency and must adapt to achieve higher elasticity and reliability in harsh manufacturing environments. The localization of machines, sensors and workers inside the industrial premises is one of such interfaces used by many applications. Current localization-based systems...
-
Efficiency evaluation of graduation process in Australian public universities
PublicationFirst-year attrition and on-time graduation are key challenges for contemporary universities, which determine their efficiency. Based on the benefit of the doubt approach, this study reports the efficiency of the graduation process in 37 Australian public universities. The super-efficiency model extended by restrictions on virtual weights is used. The proposed model considers the attrition rate and the on-time graduation rate separately...
-
Supervised-learning-based development of multi-bit RCS-reduced coding metasurfaces
PublicationCoding metasurfaces have been introduced as efficient tools allowing meticulous control over the electromagnetic (EM) scattering. One of their relevant application areas is radar cross section (RCS) reduction, which principally relies on the diffusion of impinging EM waves. Despite its significance, careful control of the scattering properties poses a serious challenge at the level of practical realization. This article is concerned...
-
Kriging-assisted hybrid reliability design and optimization of offshore wind turbine support structure based on a portfolio allocation strategy
PublicationIn recent years, offshore wind power generation technology has developed rapidly around the world, making important contributions to the further development of renewable energy. When designing an Offshore Wind Turbine (OWT) system, the uncertainties in parameters and different types of constraints need to be considered to find the optimal design of these systems. Therefore, the Reliability-Based Design Optimization (RBDO) method...
-
Z type Observer Backstepping For Induction Machines
PublicationThis paper contains a relatively new synthesis method for non-linear objects, named backstepping. This method can be used to obtain the observer structure. The paper presents the structure of the speed observer which is a new proposition of observer backstepping with additional state variables marked Z. The rotor speed can be estimated in three different ways. The first is based on the adaptive approach, the second on the nonadaptive...
-
CUTTING POWER FORECASTING WHILE WOOD SAWING: FRACTURE MECHANICS APPROACH AND AXELSSON’S MODEL COMPARISON
PublicationIn the classical approach, energetic effects (cutting forces and cutting power) of wood sawing process are generally calculated on the basis of the specific cutting resistance, which is in the case of wood cutting the function of more or less important factors. On the other hand, cutting forces (power) could be considered from a point of view of modern fracture mechanics. Another way is to forecast cutting power consumption on...
-
Minimizing Distribution and Data Loading Overheads in Parallel Training of DNN Acoustic Models with Frequent Parameter Averaging
PublicationIn the paper we investigate the performance of parallel deep neural network training with parameter averaging for acoustic modeling in Kaldi, a popular automatic speech recognition toolkit. We describe experiments based on training a recurrent neural network with 4 layers of 800 LSTM hidden states on a 100-hour corpora of annotated Polish speech data. We propose a MPI-based modification of the training program which minimizes the...
-
Sathwik Prathapagiri
PeopleSathwik was born in 2000. In 2022, he completed his Master’s of Science in Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...
-
Thin-walled frames and grids - statics and dynamics
PublicationFrames and grids assembled with thin-walled beams of open cross-section are widely applied in various civil engineering and vehicle or machine structures. Static and dynamic analysis of theses structures may be carried out by means of different models, startingfrom the classical models made of beam elements undergoing the Kirchhoff assumptions to the FE discretization of whole frame into plane elements. The former model is very...
-
Evaluation of ChatGPT Applicability to Learning Quantum Physics
PublicationChatGPT is an application that uses a large language model. Its purpose is to generate answers to various questions as well as provide information, help solve problems and participate in conversations on a wide range of topics. This application is also widely used by students for the purposes of learning or cheating (e.g., writing essays or programming codes). Therefore, in this contribution, we evaluate the ability of ChatGPT...
-
Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features
PublicationNematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...
-
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublicationThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublicationMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...
-
Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction
PublicationFast data-driven surrogate models can be employed as replacements of computationally demanding full-wave electromagnetic simulations to facilitate the microwave design procedures. Unfortunately, practical application of surrogate modelling is often hindered by the curse of dimensionality and/or considerable nonlinearity of the component characteristics. This paper proposes a simple yet reliable approach to cost-efficient modelling...
-
Trust Frameworks in Application to Technology in Elections
PublicationThe prevalence of technology in elections has increased in recent decades, both in terms of voting systems as well as ancillary ones. At the same time, the issue of public confidence and trust has come to the fore as certain threat actors have sought to undermine electoral integrity through publicized attacks and disinformation campaigns against such technology. This paper examines the nexus between this public trust and the...
-
Rapid design of miniaturised branch-line couplers through concurrent cell optimisation and surrogate-assisted fine-tuning
PublicationIn this study, the authors introduce a methodology for low-cost simulation-driven design optimisation of highly miniaturised branch-line couplers (BLCs). The first stage of their design approach exploits fast concurrent optimisation of geometrically dependent, but electromagnetically isolated cells that constitute a BLC. The cross-coupling effects between the cells are taken into account in the second stage, where a surrogate-assisted...