Filters
total: 1297
displaying 1000 best results Help
Search results for: :LEARNING
-
WYKORZYSTANIE SIECI NEURONOWYCH DO SYNTEZY MOWY WYRAŻAJĄCEJ EMOCJE
PublicationW niniejszym artykule przedstawiono analizę rozwiązań do rozpoznawania emocji opartych na mowie i możliwości ich wykorzystania w syntezie mowy z emocjami, wykorzystując do tego celu sieci neuronowe. Przedstawiono aktualne rozwiązania dotyczące rozpoznawania emocji w mowie i metod syntezy mowy za pomocą sieci neuronowych. Obecnie obserwuje się znaczny wzrost zainteresowania i wykorzystania uczenia głębokiego w aplikacjach związanych...
-
Akustyczna analiza parametrów ruchu drogowego z wykorzystaniem informacji o hałasie oraz uczenia maszynowego
PublicationCelem rozprawy było opracowanie akustycznej metody analizy parametrów ruchu drogowego. Zasada działania akustycznej analizy ruchu drogowego zapewnia pasywną metodę monitorowania natężenia ruchu. W pracy przedstawiono wybrane metody uczenia maszynowego w kontekście analizy dźwięku (ang.Machine Hearing). Przedstawiono metodologię klasyfikacji zdarzeń w ruchu drogowym z wykorzystaniem uczenia maszynowego. Przybliżono podstawowe...
-
TeleCAD course online and evaluation procedure.
PublicationW artykule zaprezentowano system zarządzania nauczaniem na odległość -TeleCAD (Teleworkers Training for CAD Systems Users, projekt Leonardo da Vinci 1998-2001) i jego wykorzystanie w projekcie V Ramowy CURE 2003-2005). Przedstawiono również procedurę ewaluacyjną kursów na odległość na podstawie doświadczeń zdobytych podczas realizacji projektu Leonardo da Vinci EMDEL (European Model for Distance Education and Learning, 2001-2004).
-
Introduction to the ONDM 2022 special issue
PublicationThis JOCN special issue contains extended versions of selected papers presented at the 26th International Conference on Optical Network Design and Modeling (ONDM 2022), which took place 16–19 May 2022 at Warsaw University of Technology, Warsaw, Poland. The topics covered by the papers represent trends in optical networking research: application of machine learning to network management, cross-layer network performance optimization,...
-
Toward Intelligent Vehicle Intrusion Detection Using the Neural Knowledge DNA
PublicationIn this paper, we propose a novel intrusion detection approach using past driving experience and the neural knowledge DNA for in-vehicle information system security. The neural knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for classifying malicious vehicle control commands...
-
Nowoczesne technologie dla systemów zdalnej edukacji. Zastosowanie Komputerów w Nauce i Technice.XIII cykl seminariów zorganizowanych przez PTETiS, Oddział Gdańsk.
PublicationInternet w przyszłości może stać się podstawowym źródłem materiałów do nauczania w szkolnictwie. Problemami w tej dziedzinie są sposoby tworzenia i przechowywania danych oraz metody poszukiwania materiałów na ściśle określony temat. Obecnie istnieją międzynarodowe standardy do tworzenia materiałów edukacyjnych, które zostaną opisane w niniejszym artykule. W publikacji zostanie również przedstawiona całościowa koncepcja...
-
Adding Intelligence to Cars Using the Neural Knowledge DNA
PublicationIn this paper we propose a Neural Knowledge DNA based framework that is capable of learning from the car’s daily operation. The Neural Knowledge DNA is a novel knowledge representation and reasoning approach designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing devices. We examine our framework for drivers' classification based on their driving behaviour. The experimental...
-
Potwierdzanie efektów uczenia się jakonowe zadanie dla uczelni wyższych
PublicationPraca nawiązuje do przeprowadzonej w 2014 roku nowelizacji ustawy z dnia 27 lipca 2005 r. Prawo o szkolnictwie wyższym. Wprowadzono w niej nowy obowiązek dla uczelni wyższych – potwierdzanie efektów uczenia się nabytych poza systemem studiów. Omowiono zasady kształcenia w kontekście Lifelong Learning oraz walidacji efektów uczenia się. Przedstawiono podstawy wdrożeniowe potwierdzania efektów uczenia się na Politechnice Gdańskiej.
-
Interactive Application for Visualization of the Basic Phenomena in RF and Microwave Devices
PublicationAn interactive computer application visualizing the basic phenomena in RF and microwave devices is presented. Such kind of educational package can be a very helpful tool for the students as well as for the teachers (of electronics and related fields). This paper is focused on three exemplary problems only and involves: movement of electric charge, filtering of electromagnetic waves and interference phenomena in antenna arrays. The...
-
Detection of the Oocyte Orientation for the ICSI Method Automation
PublicationAutomation or even computer assistance of the popular infertility treatment method: ICSI (Intracytoplasmic Sperm Injection) would speed up the whole process and improve the control of the results. This paper introduces a preliminary research for automatic spermatozoon injection into the oocyte cytoplasm. Here, the method for detection a correct orientation of the polar body of the oocyte is presented. Proposed method uses deep...
-
Virtual reality tools in teaching the conservation and history of Polish architecture
PublicationVirtual reality and its impact on teaching conservation and architectural history is the subject of this article. During the COVID-19 crisis in 2020, the education of students of architecture was transferred by Gdańsk University of Technology (GUT), Gdańsk, Poland, to distance learning. This method has provided academics an opportunity to examine the impact of virtual reality and remote education on architectural history and conservation....
-
Online sound restoration system for digital library applications.
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Thriving in multicultural work settings
PublicationOwing to globalization and the global mobility of workforce, working in multicultural environments has become a daily reality for an increasing number of manpower. Such an environment does introduce unique challenges to individuals, enabling some of them to thrive. The aim of the paper, therefore, is to explore the antecedents of thriving and its components in multicultural work settings of multinational corporations (MNCs). The...
-
Data-driven, probabilistic model for attainable speed for ships approaching Gdańsk harbour
PublicationThe growing demand for maritime transportation leads to increased traffic in ports. From this arises the need to observe the consequences of the specific speed ships reach when approaching seaports. However, usually the analyzed cases refer only to the statistical evaluation of the studied phenomenon or to the empirical modelling, ignoring the mutual influence of variables such as ship type, length or weather conditions. In this...
-
Risking It All or Here Comes the Flood
PublicationThe professional reality is interdisciplinary! When city transformation and evolution starts, what are the tools for successful strategies for urban interventions? How does digital planning for digital fabrication processes look like? How dedicated are the new professionals? And how does this all influence the future of bridge design? More than 60 students representing various disciplines of built environment and working together...
-
Olgun Aydin Dr
PeopleOlgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Senior Data Scientist in PwC Poland, gives lectures in Gdansk University of Technology in Poland and member of WhyR? Foundation. Olgun is a very big fan of R and author of the book called “R Web Scraping Quick Start Guide” , two video courses are called “Deep Dive into Statistical Modelling using R” and “Applied Machine Learning and Deep...
-
Mikroekonomia_2 lato 2023/24
e-Learning CoursesKontynuacja zajęć z mikroekonomii z sem. 1. Prowadząca dr Aniela Mikulska. Uczymy się wg metody flip blended learning.
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublicationThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublicationThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Information Systems Security 2023
e-Learning CoursesThe e-learning course for the Information Systems Security, in the field of Electronics and Telecommunications in the II degree studies (2nd year of studies, 3rd semester).
-
Information Systems Security 2023/2024
e-Learning CoursesThe e-learning course for the Information Systems Security, in the field of Electronics and Telecommunications in the II degree studies (2nd year of studies, 3rd semester).
-
Programy komputerowe a style uczenia się
PublicationW artykule podjęto tematykę uczenia się obsługi programów komputerowych w kontekście różnych stylów uczenia się użytkowników. Badania są przeprowadzone na styku użytkownik - program komputerowy; z jednej strony występuje człowiek z jego własnościami psychologicznymi, z drugiej zaś program komputerowy ze cechami wynikającymi z jego budowy i działania. Analizy empiryczne przeprowadzono na przykładzie nauki obsługi programu graficznego...
-
Categorization of Cloud Workload Types with Clustering
PublicationThe paper presents a new classification schema of IaaS cloud workloads types, based on the functional characteristics. We show the results of an experiment of automatic categorization performed with different benchmarks that represent particular workload types. Monitoring of resource utilization allowed us to construct workload models that can be processed with machine learning algorithms. The direct connection between the functional...
-
Adaptive Algorithm for Interactive Question-based Search
PublicationPopular web search engines tend to improve the relevanceof their result pages, but the search is still keyword-oriented and far from "understanding" the queries' meaning. In the article we propose an interactive question-based search algorithm that might come up helpful for identifying users' intents. We describe the algorithm implemented in a form of a questions game. The stress is put mainly on the most critical aspect of this...
-
Data-driven models for fault detection using kernel pca:a water distribution system case study
PublicationKernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection....
-
Performance Analysis of Convolutional Neural Networks on Embedded Systems
PublicationMachine learning is no longer confined to cloud and high-end server systems and has been successfully deployed on devices that are part of Internet of Things. This paper presents the analysis of performance of convolutional neural networks deployed on an ARM microcontroller. Inference time is measured for different core frequencies, with and without DSP instructions and disabled access to cache. Networks use both real-valued and...
-
Piotr Grudowski dr hab. inż.
PeopleProfessor Dr hab. Eng. Piotr Grudowski heads the Department of Quality and Commodity Management at the Faculty of Management and Economics of Gdansk University of Technology. In the years 1987-2009 he worked at the Faculty of Mechanical Engineering of the Gdansk University of Technology, where he obtained a doctoral degree in technical sciences in the discipline of construction and operation of machines and he headed the Department...
-
Farzin Kazemi
PeopleHis main research areas are seismic performance assessment of structures and seismic hazard analysis in earthquake engineering. He performed a comprehensive study on the effect of pounding phenomenon and proposed modification factors to modify the seismic collapse capacity of structures or predict the seismic collapse capacity of structures which were retrofitted with linear and nonlinear Fluid Viscous Dampers (FVDs). His current...
-
Detection of Alzheimer's disease using Otsu thresholding with tunicate swarm algorithm and deep belief network
PublicationIntroduction: Alzheimer’s Disease (AD) is a degenerative brain disorder characterized by cognitive and memory dysfunctions. The early detection of AD is necessary to reduce the mortality rate through slowing down its progression. The prevention and detection of AD is the emerging research topic for many researchers. The structural Magnetic Resonance Imaging (sMRI) is an extensively used imaging technique in detection of AD, because...
-
Adversarial attack algorithm for traffic sign recognition
PublicationDeep learning suffers from the threat of adversarial attacks, and its defense methods have become a research hotspot. In all applications of deep learning, intelligent driving is an important and promising one, facing serious threat of adversarial attack in the meanwhile. To address the adversarial attack, this paper takes the traffic sign recognition as a typical object, for it is the core function of intelligent driving. Considering...
-
Pedestrian detection in low-resolution thermal images
PublicationOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
imPlatelet classifier: image‐converted RNA biomarker profiles enable blood‐based cancer diagnostics
PublicationLiquid biopsies offer a minimally invasive sample collection, outperforming traditional biopsies employed for cancer evaluation. The widely used material is blood, which is the source of tumor-educated platelets. Here, we developed the imPlatelet classifier, which converts RNA-sequenced platelet data into images in which each pixel corresponds to the expression level of a certain gene. Biological knowledge from the Kyoto Encyclopedia...
-
Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features
PublicationNematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...
-
Changes in psychological distress among Polish medical university teachers during the COVID-19 pandemic
PublicationOur study aims to update knowledge about psychological distress and its changes in the Polish group of academic medical teachers after two years of a global pandemic. During the coronavirus disease, teachers were challenged to rapidly transition into remote teaching and adapt new assessment and evaluation systems for students, which might have been...
-
Multimedia polysensory integration training system dedicated to children with educational difficulties
PublicationThis paper aims at presenting a multimedia system providing polysensory train- ing for pupils with educational difficulties. The particularly interesting aspect of the system lies in the sonic interaction with image projection in which sounds generated lead to stim- ulation of a particular part of the human brain. The system architecture, video processing methods, therapeutic exercises and guidelines for children’s interaction...
-
AffecTube — Chrome extension for YouTube video affective annotations
PublicationThe shortage of emotion-annotated video datasets suitable for training and validating machine learning models for facial expression-based emotion recognition stems primarily from the significant effort and cost required for manual annotation. In this paper, we present AffecTube as a comprehensive solution that leverages crowdsourcing to annotate videos directly on the YouTube platform, resulting in ready-to-use emotion-annotated...
-
AITP - AI Thermal Pedestrians Dataset
PublicationEfficient pedestrian detection is a very important task in ensuring safety within road conditions, especially after sunset. One way to achieve this goal is to use thermal imaging in conjunction with deep learning methods and an annotated dataset for models training. In this work, such a dataset has been created by capturing thermal images of pedestrians in different weather and traffic conditions. All images were manually annotated...
-
Application possibilities of LBN for civil engineering issues
PublicationBayesian Networks (BN) are efficient to represent knowledge and for the reasoning in uncertainty. However the classic BN requires manual definition of the network structure by an expert, who also defines the values entered into the conditional probability tables. In practice, it can be time-consuming, hence the article proposes the use of Learning Bayesian Networks (LBN). The aim of the study is not only to present LBN, which can...
-
Przegląd metod szybkiego prototypowania algorytmów uczenia maszynowego w FPGA
PublicationW artykule opisano możliwe do wykorzystania otwarte narzędzia wspomagające szybkie prototypowanie algorytmów uczenia maszynowego (ML) i sztucznej inteligencji (AI) przy użyciu współczesnych platform FPGA. Przedstawiono przykład szybkiej ścieżki przy realizacji toru wideo wraz z implementacją przykładowego algorytmu prze-twarzania w trybie na żywo.
-
Zastosowanie metody studium przypadku w kształceniu menedżerów
PublicationKształcenie z wykorzystaniem metod rozwiązywania problemów (problem-based learning) staje się coraz bardziej popularne na wszystkich poziomach kształcenia, również w edukacji biznesowej. Przykładem takiej metody jest studium przypadku (case study). Metoda studium przypadku pozwala na rozwijanie umiejętności i kompetencji wykorzystywanych przez menedżerów w ich pracy, np. umiejętności syntezy, identyfikacji problemów, czy podejmowania...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublicationW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Differentiating patients with obstructive sleep apnea from healthy controls based on heart rate-blood pressure coupling quantified by entropy-based indices
PublicationWe introduce an entropy-based classification method for pairs of sequences (ECPS) for quantifying mutual dependencies in heart rate and beat-to-beat blood pressure recordings. The purpose of the method is to build a classifier for data in which each item consists of two intertwined data series taken for each subject. The method is based on ordinal patterns and uses entropy-like indices. Machine learning is used to select a subset...
-
Acoustical Standards Used in Design of School Spaces = Standardy akustyczne używane w projektowaniu przestrzeni szkoły
PublicationArtykuł prezentuje wytyczne projektowania akustyki wnętrz w pomieszczeniach szkolnych zawarte w europejskich i amerykańskich standardach technicznych. Opisane są także aktualne polskie przepisy odnoszące się do akustyki wnętrza. We wnioskach zaprezentowano wytyczne dla poprawy komfortu akustycznego w szkołach. // Design guidelines for interior acoustics in learning spaces included in European and American technical standards and...
-
Augmenting digital documents with negotiation capability
PublicationActive digital documents are not only capable of performing various operations using their internal functionality and external services, accessible in the environment in which they operate, but can also migrate on their own over a network of mobile devices that provide dynamically changing execution contexts. They may imply conflicts between preferences of the active document and the device the former wishes to execute on. In the...
-
Improving all-reduce collective operations for imbalanced process arrival patterns
PublicationTwo new algorithms for the all-reduce operation optimized for imbalanced process arrival patterns (PAPs) are presented: (1) sorted linear tree, (2) pre-reduced ring as well as a new way of online PAP detection, including process arrival time estimations, and their distribution between cooperating processes was introduced. The idea, pseudo-code, implementation details, benchmark for performance evaluation and a real case example...
-
The trajectories of the financial crisis of companies at risk of bankruptcy
PublicationThis article concerns the assessment of the trajectory of the collapse of enterprises in Central Europe. The author has developed a model of a Kohonen artificial neural network. This model was used to determine 6 different classes of risk and was allowed to graphically determine the 5- to 10-year trajectory of going bankrupt. The study used data on 140 companies listed on the Warsaw Stock Exchange. This population was divided into...
-
Toward Intelligent Recommendations Using the Neural Knowledge DNA
PublicationIn this paper we propose a novel recommendation approach using past news click data and the Neural Knowledge DNA (NK-DNA). The Neural Knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for news recommendation tasks on the MIND benchmark dataset. By taking advantages of NK-DNA, deep...
-
Management and Economics 2022
e-Learning CoursesIntroduction to Management and Economics, Learning by Doing method based upon trends in geopolitics and modern economics frameworks, strategy and Business Models Management Tools SEMESTR II Green Technologies and Monitoring
-
Wizualizacje w nauczaniu matematyki
PublicationCały czas aktualizowana wiedza jest niezbędnym czynnikiem, który pozwala na poruszanie się we współczesnym świecie. Tylko nowoczesna edukacja jest dzisiaj w stanie zapewnić awans cywilizacyjny młodzieży. Jak widać, dostęp do mediów i właściwe stosowanie nowych technologii są niezwykle istotne nie tylko ze względu na wykorzystanie ich w procesie podnoszenia jakości i uatrakcyjniania kształcenia. Studenci nie mający możliwości...
-
Tool Wear Monitoring Using Improved Dragonfly Optimization Algorithm and Deep Belief Network
PublicationIn recent decades, tool wear monitoring has played a crucial role in the improvement of industrial production quality and efficiency. In the machining process, it is important to predict both tool cost and life, and to reduce the equipment downtime. The conventional methods need enormous quantities of human resources and expert skills to achieve precise tool wear information. To automatically identify the tool wear types, deep...