Search results for: FINITE DIFFERENCE RIEMANN SOLVER MUSTA-FORCE ALGORITHM PARALLEL ALGORITHMS CUDA
-
MEMORY EFFECT ANALYSIS USING PIECEWISE CUBIC B-SPLINE OF TIME FRACTIONAL DIFFUSION EQUATION
PublicationThe purpose of this work is to study the memory effect analysis of Caputo–Fabrizio time fractional diffusion equation by means of cubic B-spline functions. The Caputo–Fabrizio interpretation of fractional derivative involves a non-singular kernel that permits to describe some class of material heterogeneities and the effect of memory more effectively. The proposed numerical technique relies on finite difference approach and cubic...
-
A novel heterogeneous model of concrete for numerical modelling of ground penetrating radar
PublicationThe ground penetrating radar (GPR) method has increasingly been applied in the non-destructive testing of reinforced concrete structures. The most common approach to the modelling of radar waves is to consider concrete as a homogeneous material. This paper proposes a novel, heterogeneous, numerical model of concrete for exhaustive interpretation of GPR data. An algorithm for determining the substitute values of the material constants...
-
Using GPUs for Parallel Stencil Computations in Relativistic Hydrodynamic Simulation
PublicationThis paper explores the possibilities of using a GPU for complex 3D finite difference computation. We propose a new approach to this topic using surface memory and compare it with 3D stencil computations carried out via shared memory, which is currently considered to be the best approach. The case study was performed for the extensive computation of collisions between heavy nuclei in terms of relativistic hydrodynamics.
-
Further Developments of the Online Sound Restoration System for Digital Library Applications
PublicationNew signal processing algorithms were introduced to the online service for audio restoration available at the web address: www.youarchive.net. Missing or distorted audio samples are estimated using a specific implementation of the Jannsen interpolation method. The algorithm is based on the autoregressive model (AR) combined with the iterative complementation of signal samples. Since the interpolation algorithm is computationally...
-
Dynamic coloring of graphs
PublicationDynamics is an inherent feature of many real life systems so it is natural to define and investigate the properties of models that reflect their dynamic nature. Dynamic graph colorings can be naturally applied in system modeling, e.g. for scheduling threads of parallel programs, time sharing in wireless networks, session scheduling in high-speed LAN's, channel assignment in WDM optical networks as well as traffic scheduling. In...
-
Computationally Effcient Solution of a 2D Diffusive Wave Equation Used for Flood Inundation Problems
PublicationThis paper presents a study dealing with increasing the computational efficiency in modeling floodplain inundation using a two-dimensional diffusive wave equation. To this end, the domain decomposition technique was used. The resulting one-dimensional diffusion equations were approximated in space with the modified finite element scheme, whereas time integration was carried out using the implicit two-level scheme. The proposed...
-
The use of a two-phase Monte Carlo material model to reflect the dispersion of asphalt concrete fracture parameters
PublicationThe work covers comprehensive laboratory tests of semi-circular bending (SCB) of asphalt concrete samples. The results of two test series, including four and 32 SCB specimens, indicate a substantial scatter of force–deflection (F-d) histories. The numerical analysis is aimed to reflect the maximum breaking load and fracture energy of the samples, pointing out their random character. The original simulation-based fictitious Monte...
-
Expedited Feature-Based Quasi-Global Optimization of Multi-Band Antenna Input Characteristics with Jacobian Variability Tracking
PublicationDesign of modern antennas relies—for reliability reasons—on full-wave electromagnetic simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field performance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives, make numerical optimization of antenna geometry parameters a highly recommended design procedure. Conventional algorithms, particularly...
-
LDFEM analysis of FDP auger installation in cohesive soil
PublicationThis paper deals with large deformation finite element (LDFE) preliminary modelling of Full Displacement Pile (FDP) installation in cohesive soil deposit located in Jazowa, Poland. The detailed FDP auger geometry is applied and the drilling process is modelled with full 3D Coupled Eulerian-Lagrangian (CEL) formulation. The total stress approach and elastic-perfectly plastic model with rate-dependent Mises plasticity is used. The...
-
An MOR Algorithm Based on the Immittance Zero and Pole Eigenvectors for Fast FEM Simulations of Two-Port Microwave Structures
PublicationThe aim of this article is to present a novel model-order reduction (MOR) algorithm for fast finite-element frequency-domain simulations of microwave two-port structures. The projection basis used to construct the reduced-order model (ROM) comprises two sets: singular vectors and regular vectors. The first set is composed of the eigenvectors associated with the poles of the finite-element method (FEM) state-space system, while...
-
Expedited Optimization of Passive Microwave Devices Using Gradient Search and Principal Directions
PublicationOver the recent years, utilization of numerical optimization techniques has become ubiquitous in the design of high-frequency systems, including microwave passive components. The primary reason is that the circuits become increasingly complex to meet ever growing performance demands concerning their electrical performance, additional functionalities, as well as miniaturization. Nonetheless, as reliable evaluation of microwave device...
-
Approximation algorithms for job scheduling with block-type conflict graphs
PublicationThe problem of scheduling jobs on parallel machines (identical, uniform, or unrelated), under incompatibility relation modeled as a block graph, under the makespan optimality criterion, is considered in this paper. No two jobs that are in the relation (equivalently in the same block) may be scheduled on the same machine in this model. The presented model stems from a well-established line of research combining scheduling theory...
-
Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis
PublicationOptimization-based parameter tuning has become an inherent part of contemporary antenna design process. For the sake of reliability, it is typically conducted at the level of full-wave electromagnetic (EM) simulation models. This may incur considerable computational expenses depending on the cost of an individual EM analysis, the number of adjustable variables, the type of task (local, global, single-/multi-objective optimization),...
-
Modal modification of structural damping applied to increase the stability and convergence of numerical integration
PublicationThe presented paper refers to numerical tests done on systems fused of multibody and finite-element parts. The appearance of its multibody part gives rise to significant nonlinear components, i.e., second-order nonlinear differential equations express the dynamics. We usually solve these equations by “step-by-step” integration methods. When using the currently available integration algorithms, we approximate these initial systems...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublicationOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Scheduling with Complete Multipartite Incompatibility Graph on Parallel Machines: Complexity and Algorithms
PublicationIn this paper, the problem of scheduling on parallel machines with a presence of incompatibilities between jobs is considered. The incompatibility relation can be modeled as a complete multipartite graph in which each edge denotes a pair of jobs that cannot be scheduled on the same machine. The paper provides several results concerning schedules, optimal or approximate with respect to the two most popular criteria of optimality:...
-
Optimization of Stabilizing Systems in Protection of Cultural Heritage: The Case of the Historical Retaining Wall in the Wisłoujście Fortress
PublicationThe aim of the paper is to propose new quantitative criteria for selecting the optimal method of securing and repairing a historical object, which take into account Structural, Conservation and Architectural aspects (the S–C–A method). Construction works on cultural heritage sites tend to be challenging and require an interdisciplinary approach. Therefore, they are strictly related to the philosophy of sustainable development which...
-
Scheduling of compatible jobs on parallel machines
PublicationThe dissertation discusses the problems of scheduling compatible jobs on parallel machines. Some jobs are incompatible, which is modeled as a binary relation on the set of jobs; the relation is often modeled by an incompatibility graph. We consider two models of machines. The first model, more emphasized in the thesis, is a classical model of scheduling, where each machine does one job at time. The second one is a model of p-batching...
-
Numerical Issues and Approximated Models for the Diagnosis of Transmission Pipelines
PublicationThe chapter concerns numerical issues encountered when the pipeline flow process is modeled as a discrete-time state-space model. In particular, issues related to computational complexity and computability are discussed, i.e., simulation feasibility which is connected to the notions of singularity and stability of the model. These properties are critical if a diagnostic system is based on a discrete mathematical model of the flow...
-
Planning optimised multi-tasking operations under the capability for parallel machining
PublicationThe advent of advanced multi-tasking machines (MTMs) in the metalworking industry has provided the opportunity for more efficient parallel machining as compared to traditional sequential processing. It entailed the need for developing appropriate reasoning schemes for efficient process planning to take advantage of machining capabilities inherent in these machines. This paper addresses an adequate methodical approach for a non-linear...
-
Condition-Based Monitoring of DC Motors Performed with Autoencoders
PublicationThis paper describes a condition-based monitoring system estimating DC motor degradation with the use of an autoencoder. Two methods of training the autoencoder are evaluated, namely backpropagation and extreme learning machines. The root mean square (RMS) error in the reconstruction of successive fragments of the measured DC motor angular-frequency signal, which is fed to the input of autoencoder, is used to determine the health...
-
Generalized regression neural network and fitness dependent optimization: Application to energy harvesting of centralized TEG systems
PublicationThe thermoelectric generator (TEG) system has attracted extensive attention because of its applications in centralized solar heat utilization and recoverable heat energy. The operating efficiency of the TEG system is highly affected by operating conditions. In a series-parallel structure, due to diverse temperature differences, the TEG modules show non-linear performance. Due to the non-uniform temperature distribution (NUTD) condition,...
-
Deformation mitigation and twisting moment control in space frames
PublicationOver the last five decades, space frames have centered on the modernization of touristic zones in view of architectural attractions. Although attempts to control joint movement and minimize axial force and bending moment in such structures were made sufficiently, twisting moments in space frames have been underestimated so far. In space frames, external load or restoring the misshapen shape may cause twisting in members. We herein...
-
Nieliniowa statyka 6-parametrowych powłok sprężysto plastycznych. Efektywne obliczenia MES
PublicationGłównym zagadnieniem omawianym w monografii jest sformułowanie sprężysto-plastycznego prawa konstytutywnego w nieliniowej 6-parametrowej teorii powłok. Wyróżnikiem tej teorii jest występujący w niej w naturalny sposób tzw. stopień 6 swobody, czyli owinięcie (drilling rotation). Podstawowe założenie pracy to przyjęcie płaskiego stanu naprężenia uogólnionego na ośrodek typu Cosseratów. Takie podejście stanowi oryginalny aspekt opracowania....
-
Optimization of the Hardware Layer for IoT Systems using a Trust Region Method with Adaptive Forward Finite Differences
PublicationTrust-region (TR) algorithms represent a popular class of local optimization methods. Owing to straightforward setup and low computational cost, TR routines based on linear models determined using forward finite differences (FD) are often utilized for performance tuning of microwave and antenna components incorporated within the Internet of Things systems. Despite usefulness for design of complex structures, performance of TR methods...
-
Uncertainty quantification of modal parameter estimates obtained from subspace identification: An experimental validation on a laboratory test of a large-scale wind turbine blade
PublicationThe uncertainty afflicting modal parameter estimates stems from e.g., the finite data length, unknown, or partly measured inputs and the choice of the identification algorithm. Quantification of the related errors with the statistical Delta method is a recent tool, useful in many modern modal analysis applications e.g., damage diagnosis, reliability analysis, model calibration. In this paper, the Delta method-based uncertainty...
-
On possible applications of media described by fractional-order models in electromagnetic cloaking
PublicationThe purpose of this paper is to open a scientific discussion on possible applications of media described by fractional-order (FO) models (FOMs) in electromagnetic cloaking. A 2-D cloak based on active sources and the surface equivalence theorem is simulated. It employs a medium described by FOM in communication with sources cancelling the scattered field. A perfect electromagnetic active cloak is thereby demonstrated with the use...
-
Preconditioners with Low Memory Requirements for Higher-Order Finite-Element Method Applied to Solving Maxwell’s Equations on Multicore CPUs and GPUs
PublicationThis paper discusses two fast implementations of the conjugate gradient iterative method using a hierarchical multilevel preconditioner to solve the complex-valued, sparse systems obtained using the higher order finite-element method applied to the solution of the time-harmonic Maxwell equations. In the first implementation, denoted PCG-V, a classical V-cycle is applied and the system of equations on the lowest level is solved...
-
Simulating propagation of coherent light in random media using the Fredholm type integral equation
PublicationStudying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g....
-
Optimization of constitutive law for objective numerical modeling of knitted fabric
PublicationThis paper discusses the problem of macroscopic modeling a knitted technical fabric with the aim to determine a constitutive law for adequately modeling the material response under real-life load. As phenomenological, hyperelastic material laws reveal different parameters due to different test modalities used to identify such parameters, an optimization scheme is proposed to determine an objective solution. The study is conducted...
-
Nonlinear material identification of heterogeneous isogeometric Kirchhoff–Love shells
PublicationThis work presents a Finite Element Model Updating inverse methodology for reconstructing heterogeneous materialdistributions based on an efficient isogeometric shell formulation. It uses nonlinear hyperelastic material models suitable fordescribing incompressible material behavior as well as initially curved shells. The material distribution is discretized by bilinearelements such that the nodal values...
-
TDOA versus ATDOA for wide area multilateration system
PublicationThis paper outlines a new method of a location service (LCS) in the asynchronous wireless networks (AWNs) where the nodes (base stations) operate asynchronously in relation to one another. This method, called asynchronous time difference of arrival (ATDOA), enables the calculation of the position of the mobile object (MO) through the measurements taken by a set of non-synchronized fixed nodes and is based on the measurement of...
-
Prediction of maximum tensile stress in plain-weave composite laminates with interacting holes via stacked machine learning algorithms: A comparative study
PublicationPlain weave composite is a long-lasting type of fabric composite that is stable enough when being handled. Open-hole composites have been widely used in industry, though they have weak structural performance and complex design processes. An extensive number of material/geometry parameters have been utilized for designing these composites, thereby an efficient computational tool is essential for that purpose. Different Machine Learning...
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublicationBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
Low-Cost and Precise Automated Re-Design of Antenna Structures Using Interleaved Geometry Scaling and Gradient-Based Optimization
PublicationDesign of contemporary antennas is an intricate endeavor involving multiple stages, among others, tuning of geometry parameters. In particular, re-designing antennas to different operating frequencies, makes parametric optimization imperative to ensure the best achievable system performance. If the center frequency at the current design is distant from the target one, local tuning methods generally fail, whereas global algorithms...
-
Wiktoria Wojnicz dr hab. inż.
PeopleDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) List of papers (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E., Analysis of...