Search results for: QUANTUM PRIVACY WITNESS - Bridge of Knowledge

Search

Search results for: QUANTUM PRIVACY WITNESS

Search results for: QUANTUM PRIVACY WITNESS

  • Quantum metrology: Heisenberg limit with bound entanglement

    Publication

    - PHYSICAL REVIEW A - Year 2015

    Quantum entanglement may provide a huge boost in the precision of parameter estimation. However, quantum metrology seems to be extremely sensitive to noise in the probe state. There is an important still open question: What type of entanglement is useful as a resource in quantum metrology? Here we raise this question in relation to entanglement distillation. We provide a counterintuitive example of a family of bound entangled states...

    Full text available to download

  • Generic emergence of classical features in quantum Darwinism

    Publication

    - Nature Communications - Year 2015

    Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics:...

    Full text to download in external service

  • Quantum key distribution based on private states: Unconditional security over untrusted channels with zero quantum capacity

    Publication
    • K. Horodecki
    • M. Horodecki
    • P. Horodecki
    • D. Leung
    • J. Oppenheim

    - IEEE TRANSACTIONS ON INFORMATION THEORY - Year 2008

    In this paper, we prove unconditional security for a quantum key distribution (QKD) protocol based on distilling pbits (twisted ebits) from an arbitrary untrusted state that is claimed to contain distillable key. Our main result is that we can verify security using only public communication-via parameter estimation of the given untrusted state. The technique applies even to bound-entangled states, thus extending QKD to the regime...

  • A simple test for quantum channel capacity

    Publication

    Based on state and channel isomorphism we point out that semidefiniteprogramming can be used as a quick test for nonzero one-way quantum channelcapacity. This can be achieved by searching for symmetric extensions of statesisomorphic to a given quantum channel. With this method we provide examplesof quantum channels that can lead to high entanglement transmission but stillhave zero one-way capacity, in particular, regions of symmetric...

    Full text to download in external service

  • Introduction to quantum mechanics

    e-Learning Courses
    • J. Rybicki

  • Generic appearance of objective results in quantum measurements

    Publication

    - PHYSICAL REVIEW A - Year 2017

    Measurement is of central interest in quantum mechanics as it provides the link between the quantum world and the world of everyday experience. One of the features of everyday experience is its robust, objective character, contrasting the delicate nature of quantum systems. Here we analyze in a completely model-independent way the celebrated von Neumann measurement process, using recent techniques of information flow, studied in...

    Full text available to download

  • Direct estimation of linear and nonlinear functionals of quantum state

    Publication
    • A. Ekert
    • C. M. Alves
    • D. K. Oi
    • M. Horodecki
    • P. Horodecki
    • L. C. Kwek

    - PHYSICAL REVIEW LETTERS - Year 2002

    We present a simple quantum network, based on the controlled-SWAP gate, that can extract certain properties of quantum states without recourse to quantum tomography. It can be used as a basic building block for direct quantum estimations of both linear and nonlinear functionals of any density operator. The network has many potential applications ranging from purity tests and eigenvalue estimations to direct characterization of...

  • Thermodynamical approach to quantifying quantum correlations

    Publication

    - PHYSICAL REVIEW LETTERS - Year 2002

    We consider the amount of work which can be extracted from a heat bath using a bipartite state ρ shared by two parties. In general it is less then the amount of work extractable when one party is in possession of the entire state. We derive bounds for this “work deficit” and calculate it explicitly for a number of different cases. In particuar, for pure states the work deficit is exactly equal to the distillable entanglement of...

    Full text to download in external service

  • Quantum structure in competing lizard communities

    Publication

    - ECOLOGICAL MODELLING - Year 2014

    Almost two decades of research on applications of the mathematical formalism of quantum theory as a modeling tool in domains different from the micro-world has given rise to many successful applications in situations related to human behavior and thought, more specifically in cognitive processes of decision-making and the ways concepts are combined into sentences. In this article, we extend this approach to animal behavior, showing...

    Full text available to download

  • Applications of semi-definite optimization in quantum information protocols

    Publication

    - Year 2016

    This work is concerned with the issue of applications of the semi-definite programming (SDP) in the field of quantum information sci- ence. Our results of the analysis of certain quantum information protocols using this optimization technique are presented, and an implementation of a relevant numerical tool is introduced. The key method used is NPA discovered by Navascues et al. [Phys. Rev. Lett. 98, 010401 (2007)]. In chapter...

  • Dynamical description of quantum computing: generic nonlocality of quantumnoise

    Publication

    We develop a dynamical non-Markovian description of quantum computing in the weak-coupling limit, in the lowest-order approximation. We show that the long-range memory of the quantum reservoir (such as the 1/t4 one exhibited by electromagnetic vacuum) produces a strong interrelation between the structure of noise and the quantum algorithm, implying nonlocal attacks of noise. This shows that the implicit assumption of quantum error...

    Full text available to download

  • No-local-broadcasting theorem for multipartite quantum correlations

    Publication

    We prove that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartite classical probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e., of locally sharing preestablished correlations, which is feasible if and only if correlations are stricly classical. Our operational...

    Full text to download in external service

  • Evaluation of ChatGPT Applicability to Learning Quantum Physics

    Publication

    - Year 2023

    ChatGPT is an application that uses a large language model. Its purpose is to generate answers to various questions as well as provide information, help solve problems and participate in conversations on a wide range of topics. This application is also widely used by students for the purposes of learning or cheating (e.g., writing essays or programming codes). Therefore, in this contribution, we evaluate the ability of ChatGPT...

    Full text to download in external service

  • Steering is an essential feature of non-locality in quantum theory

    Publication

    - Nature Communications - Year 2018

    A physical theory is called non-local when observers can produce instantaneous effects over distant systems. Non-local theories rely on two fundamental effects: local uncertainty relations and steering of physical states at a distance. In quantum mechanics, the former one dominates the other in a well-known class of non-local games known as XOR games. In particular, optimal quantum strategies for XOR games are completely determined...

    Full text available to download

  • Quantum communication complexity advantage implies violation of a Bell inequality

    Publication

    - PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA - Year 2016

    We obtain a general connection between a quantum advantage in communication complexity and non-locality. We show that given any protocol offering a (sufficiently large) quantum advantage in communication complexity, there exists a way of obtaining measurement statistics which violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily...

    Full text to download in external service

  • Quantum dots in gas sensing a review

    Air pollution becomes an increasing problem in the recent years. There is a need to develop more sensitive gas sensors. Much effort has been performed to develop different types of gas sensors, such as electrochemical sensors or polymer sensors. One of the most promising approaches to improve sensors performance is the application of the nanostructures as sensing materials. State of the art of quantum...

  • Cosmic-Time Quantum Mechanics and the Passage-of-Time Problem

    Publication

    - Universe - Year 2023

    A new dynamical paradigm merging quantum dynamics with cosmology is discussed.

    Full text available to download

  • Efficient bounds on quantum-communication rates via their reduced variants

    Publication

    - PHYSICAL REVIEW A - Year 2010

    We investigate one-way communication scenarios where Bob operating on his component can transfer some subsystem to the environment. We define reduced versions of quantum-communication rates and, further, prove upper bounds on a one-way quantum secret key, distillable entanglement, and quantum-channel capacity by means of their reduced versions. It is shown that in some cases they drastically improve their estimation.

    Full text available to download

  • Quantum strategies for rendezvous and domination tasks on graphs with mobile agents

    Publication

    - PHYSICAL REVIEW A - Year 2024

    This paper explores the application of quantum nonlocality, a renowned and unique phenomenon acknowledged as a valuable resource. Focusing on an alternative application, we demonstrate its quantum advantage for mobile agents engaged in specific distributed tasks without communication. The research addresses the significant challenge of rendezvous on graphs and introduces a distributed task for mobile agents grounded in the graph...

    Full text available to download

  • Analytical studies of spectrum broadcast structures in quantum Brownian motion

    Spectrum broadcast structures are a new and fresh concept in the quantum-to-classical transition, introduced recently in the context of decoherence and the appearance of objective features in quantum mechanics. These are specific quantum state structures, responsible for the objectivization of the decohered state of a system. Recently, they have been demonstrated by means of the well-known quantum Brownian motion model of the recoilless...

    Full text to download in external service

  • Local hidden–variable models for entangled quantum states

    Publication

    While entanglement and violation of Bell inequalities were initially thought to be equivalent quantum phenomena, we now have different examples of entangled states whose correlations can be described by local hidden-variable models and, therefore, do not violate any of the Bell inequalities. We provide an up-to-date overview of the existing literature regarding local hidden-variable models for entangled quantum states, in both...

    Full text to download in external service

  • Transactions on Data Privacy

    Journals

    ISSN: 1888-5063 , eISSN: 2013-1631

  • Journal of Privacy and Confidentiality

    Journals

    eISSN: 2575-8527

  • Tip-Based Nanofabrication as a Rapid Prototyping Tool for Quantum Science and Technology

    Publication

    Tip-Based Nanofabication as a Rapid Prototyping Tool for Quantum Science and Technology discusses the development of cantilevered nanotips techniques of quantum devices prototyping and how they evolved from scanning probe microscopy. Also covered are the advantages and future prospects of atomic resolution capability and how to use this enabling technology as a rapid prototyping tool for quantum science and technology.

    Full text to download in external service

  • Quantum-correlation breaking channels, broadcasting scenarios, and finite Markov chains

    Publication

    - PHYSICAL REVIEW A - Year 2012

    One of the classical results concerning quantum channels is the characterization of entanglementbreakingchannels [M. Horodecki et al., Rev. Math. Phys 15, 629 (2003)]. We address the questionwhether there exists a similar characterization on the level of quantum correlations which may gobeyond entanglement. The answer is fully affirmative in the case of breaking quantum correlationsdown to the, so called, QC (Quantum-Classical)...

    Full text available to download

  • Multi-criterion, evolutionary and quantum decision making in complex systems

    Publication

    - Year 2011

    Multi-criterion, evolutionary and quantum decision making supported by the Adaptive Quantum-based Multi-criterion Evolutionary Algorithm (AQMEA) has been considered for distributed complex systems. AQMEA had been developed to the task assignment problem, and then it has been applied to underwater vehicle planning as another benchmark three-criterion optimization problem. For evaluation of a vehicle trajectory three criteria have...

  • Quantum Matter

    Journals

    ISSN: 2164-7615

  • Quantum Topology

    Journals

    ISSN: 1663-487X , eISSN: 1664-073X

  • QUANTUM ELECTRONICS

    Journals

    ISSN: 1063-7818 , eISSN: 1468-4799

  • PRX Quantum

    Journals

    eISSN: 2691-3399

  • Quantum Reports

    Journals

    eISSN: 2624-960X

  • Quantum corrections to 4 model solutions and applications to Heisenberg chain dynamics

    The Heisenberg spin chain is considered in φ^4 model approximation. Quantum corrections to classical solutions of the one-dimensional φ^4 model within the correspondent physics are valuated with account of rest d − 1 dimensions of a d-dimensional theory. A quantization of the model is considered in terms of space- time functional integral. The generalized zeta-function formalism is used to renormalize and evaluate the functional...

    Full text available to download

  • Experimental certification of an informationally complete quantum measurement in a device-independent protocol

    Publication

    - Optica - Year 2020

    Minimal informationally complete positive operator-valued measures (MIC-POVMs) are special kinds of measurement in quantum theory in which the statistics of their d2-outcomes are enough to reconstruct any d-dimensional quantum state. For this reason, MIC-POVMs are referred to as standard measurements for quantum information.Here, we report an experiment with entangled photon pairs that certifies, for what we believe is the first...

    Full text available to download

  • Directed percolation effects emerging from superadditivity of quantum networks

    Entanglement-induced nonadditivity of classical communication capacity in networks consisting of quantum channels is considered. Communication lattices consisting of butterfly-type entanglement-breaking channels augmented, with some probability, by identity channels are analyzed. The capacity superadditivity in the network is manifested in directed correlated bond percolation which we consider in two flavors: simply directed and...

    Full text available to download

  • The Ellenbogen’s “Matter as Software” Concept for Quantum Computer Implementation: IV. The X@C60 Molecular Building Blocks (MBBs) and Computing System Lifetime Estimation

    Publication

    - Quantum Matter - Year 2016

    The problem of approximate lifetimes of individual X@C60 MBBs and tip-based nanofabricated quantum computing device systems is discussed under the conservative assumption of single-point failure. A single chemical transformation of the C60 cage into high-energy opened o-C60 isomer which forms the communication canal for the low energy transfer of an X atom from X@C60 MBB to the outside environment was studied. According to the...

    Full text to download in external service

  • Hybrid quantum-classical approach for atomistic simulation of metallic systems

    The learn-on-the-fly (LOTF) method [G. Csanyi et al., Phys. Rev. Lett. 93, 175503 (2004)] serves to seamlessly embed quantum-mechanical computations within a molecular-dynamics framework by continual local retuning of the potential's parameters so that it reproduces the quantum-mechanical forces. In its current formulation, it is suitable for systems where the interaction is short-ranged, such as covalently bonded semiconductors....

    Full text available to download

  • Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network

    Publication

    - PHYSICAL REVIEW A - Year 2010

    We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative...

    Full text available to download

  • Quantum-classical calculations of the nanomechanical properties of metals

    Publication

    - Year 2009

    Tradycyjnie symulacje komputerowe układów w skali atomowej prowadzone są przy użyciu klasycznej metody dynamiki molekularnej (MD) bądź kwantowych metod ab initio. Główną wadą ujęcia klasycznego jest jego empiryczna natura, a co za tym idzie - niewielka przenośność, jego prostota natomiast pozwala na przeprowadzanie symulacji układów zawierających miliony atomów. W wyniku zastosowania metod kwantowych otrzymuje się bardziej wiarygodne...

  • Connections between Mutually Unbiased Bases and Quantum Random Access Codes

    Publication

    - PHYSICAL REVIEW LETTERS - Year 2018

    We present a new quantum communication complexity protocol, the promise--Quantum Random Access Code, which allows us to introduce a new measure of unbiasedness for bases of Hilbert spaces. The proposed measure possesses a clear operational meaning and can be used to investigate whether a specific number of mutually unbiased bases exist in a given dimension by employing Semi--Definite Programming techniques.

    Full text to download in external service

  • Numerical modeling of quantum dynamical processes

    Publication

    - Year 2023

    In this dissertation I present a high-precision (15, 18 or 33 decimal places) C++ implementation of quantum dynamics time propagation algorithms for both time-independent and time-dependent Hamiltonian with an inhomogeneous source term. Moreover I present an extension of both algorithms for time propagation to handle arbitrary number of coupled electronic levels. I have performed a careful validation of these implementations comparing...

    Full text available to download

  • The photocurrent quantum efficiency dependence on the applied voltage in organic solar cells

    We demonstrate that our recently reported model (Szmytkowski 2007 J. Phys. D: Appl. Phys. 40 3352) of the photocurrent quantum efficiency in organic semiconductors explains the external quantum efficiency dependence on the electric field in organic solar cells. This effect can be explained by taking into account that the photogeneration of charge carriers occurs via the electron-hole pair dissociation and the space charge effects...

    Full text to download in external service

  • Quantum corrections to phi^4 model solutions and applications to Heisenberg chain dynamics

    The Heisenberg spin chain is considered in φ^4 model approximation. Quantum corrections to classical solutions of the one-dimensional φ^4 model within the correspondent physics are evaluated with account of rest d−1 dimensions of a d-dimensional theory. A quantization of the model is considered in terms of spacetime functional integral. The generalized zeta-function formalism is used to renormalize and evaluate the functional integral...

    Full text available to download

  • Jan Kozicki dr hab. inż. arch.

    In year 2002 after obtaining master's degree in construction was employed on Faculty of Civil and Environmental Engineering. In 2004 obtained master's degree in architecture on Faculty of Architecture focusing on a research outpost on Mars. Defended PhD in year 2007 in the field of numerical modeling. In 2013 obtained Licentiate degree in theoretical physics on University of Gdańsk. In year 2014 obtained habilitation in technical...

  • Multi-criterion decision making in distributed systems by quantum evolutionary algorithms

    Publication
    • J. Balicki
    • H. Balicka
    • J. Masiejczyk
    • A. Zacniewski

    - Year 2010

    Decision making by the AQMEA (Adaptive Quantum-based Multi-criterion Evolutionary Algorithm) has been considered for distributed computer systems. AQMEA has been extended by a chromosome representation with the registry of the smallest units of quantum information. Evolutionary computing with Q-bit chromosomes has been proofed to characterize by the enhanced population diversity than other representations, since individuals represent...

  • Statistical properties of a modified standard map in quantum and classical regimes

    Publication

    - NONLINEAR DYNAMICS - Year 2019

    We present a model—a modified standard map. This model has interesting properties that allow quantum–classical correspondences to be studied. For some range of parameters in the classical phase space of this model, there exist large accelerator modes. We can create a family of maps that have large accelerator modes.

    Full text available to download

  • Complementarity between entanglement-assisted and quantum distributed random access code

    Publication

    - PHYSICAL REVIEW A - Year 2017

    Collaborative communication tasks such as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific...

    Full text available to download

  • Decoherence-free communication over multiaccess quantum channels

    In this paper we consider decoherence-free communication over multiple access and k-user quantum channels. First, we concentrate on a hermitian unitary noise model U for a two-access bi-unitary channel and show that in this case a decoherence-free code exists if the space of Schmidt matrices of an eigensubspace of U exhibits certain properties of decomposability. Then, we show that our technique is also applicable for generic random unitary...

    Full text to download in external service

  • Natural carbon-based quantum dots and their applications in drug delivery: A review

    Publication

    - BIOMEDICINE & PHARMACOTHERAPY - Year 2020

    Natural carbon based quantum dots (NCDs) are an emerging class of nanomaterials in the carbon family. NCDs have gained immense acclamation among researchers because of their abundance, eco-friendly nature, aqueous solubility, the diverse functionality and biocompatibility when compared to other conventional carbon quantum dots (CDs).The presence of different functional groups on the surface of NCDs such as thiol, carboxyl, hydroxyl,...

    Full text available to download

  • Cartoon computation: Quantum-like algorithms without quantum mechanics

    Zaproponowano formalizm prowadzący do algorytmów analogicznych do kwantowych, lecz wykorzystujący jedynie struktury geometryczne. Jako przykład sformułowano odpowiednik kwantowego algorytmu Deutscha-Jozsy.

    Full text available to download

  • Objectivity in a Noisy Photonic Environment through Quantum State Information Broadcasting

    Publication

    - PHYSICAL REVIEW LETTERS - Year 2014

    Recently, the emergence of classical objectivity as a property of a quantum state has been explicitly derived for a small object embedded in a photonic environment in terms of a spectrum broadcast form—a specific classically correlated state, redundantly encoding information about the preferred states of the object in the environment. However, the environment was in a pure state and the fundamental problem was how generic and robust...

    Full text to download in external service