Filters
total: 9173
-
Catalog
- Publications 8160 available results
- Journals 188 available results
- Conferences 102 available results
- Publishing Houses 1 available results
- People 125 available results
- Inventions 1 available results
- Projects 17 available results
- Research Equipment 8 available results
- e-Learning Courses 143 available results
- Events 4 available results
- Open Research Data 424 available results
displaying 1000 best results Help
Search results for: COMPUTATIONAL MODEL FOR SIMULATION
-
Efficient model order reduction for FEM analysis of waveguide structures and resonators
PublicationAn efficient model order reduction method for three-dimensional Finite Element Method (FEM) analysis of waveguide structures is proposed. The method is based on the Efficient Modal Order Reduction (ENOR) algorithm for creating macro-elements in cascaded subdomains. The resulting macro-elements are represented by very compact submatrices, leading to significant reduction of the overall number of unknowns. The efficiency of the model...
-
Hydrodynamic reanalysis of sea level in the Baltic Sea using the PM3D model
Open Research DataThe data set contains the results of numerical modelling of sea level fluctuations in the Baltic Sea in the Baltic Sea since 1998. A long-term reanalysis was performed using a three-dimensional hydrodynamic model PM3D (Kowalewski and Kowalewska-Kalkowska, 2017), a new version of the M3D model (Kowalewski, 1997).
-
Surrogate-assisted EM-driven miniaturization of wideband microwave couplers by means of co-simulation low-fidelity models
PublicationThis article proposes a methodology for rapid design optimization of miniaturized wideband couplers. More specifically, a class of circuits is considered, in which conventional transmission lines are replaced by their abbreviated counterparts referred to as slow-wave compact cells. Our focus is on explicit reduction of the structure size as well as on reducing the CPU cost of the design process. For the sake of computational feasibility,...
-
Time Domain Modeling of Propeller Forces due to Ventilation in Static and Dynamic Conditions
PublicationThis paper presents experimental and theoretical studies on the dynamic effect on the propeller loading due to ventilation by using a simulation model that generates a time domain solution for propeller forces in varying operational conditions. For ventilation modeling, the simulation model applies a formula based on the idea that the change in lift coefficient due to ventilation computes the change in the thrust coefficient. It...
-
Hydrodynamic reanalysis of water temperature and salinity in the Baltic Sea using the PM3D model
Open Research DataThe dataset contains the results of numerical modeling of water temperature and salinity in the Baltic Sea since 1998. A long-term reanalysis was performed using the three-dimensional hydrodynamic model PM3D (Kowalewski and Kowalewska-Kalkowska, 2017), a new version of the M3D model (Kowalewski, 1997). A numerical dynamic-thermodynamic model of sea...
-
Modeling Parallel Applications in the MERPSYS Environment
PublicationThe chapter presents how to model parallel computational applications for which simulation of execution in a large-scale parallel or distributed environment is performed within the MERPSYS environment. Specifically, it is shown what approaches can be adopted to model key paradigms often used for parallel applications: master-slave, geometric parallelism (single program multiple data), pipelined and divide-and-conquer applications....
-
Reduced-Cost Microwave Design Closure by Multi-Resolution EM Simulations and Knowledge-Based Model Management
PublicationParameter adjustment through numerical optimization has become a commonplace of contemporary microwave engineering. Although circuit theory methods are ubiquitous in the development of microwave components, the initial designs obtained with such tools have to be further tuned to improve the system performance. This is particularly pertinent to miniaturized structures, where the cross-coupling effects cannot be adequately accounted...
-
Coarse-grained simulation - an efficient approach for studying motions of large proteins
PublicationOne of the most important challenges in performing Molecular Dynamics (MD) simulations of large protein complexes is to accommodate the model accuracy and the simulation timescale. Hitherto, for the most relevant dynamics of protein aggregates in an explicit aqueous environment, the timescale reachable for the all-atoms simulations is of hundreds of nanoseconds. This range is four to six orders of magnitude smaller than processes...
-
A Model-Order Reduction Approach for Electromagnetic Problems With Nonaffine Frequency Dependence
PublicationThe aim of this paper is to present a novel model-order reduction (MOR) technique for the efcient frequency-domain nite-element method (FEM) simulation of microwave components. It is based on the standard reduced-basis method, but the subsequent expansion frequency points are selected following the so-called sparsied greedy strategy. This feature makes it especially useful to perform a fast-frequency sweep of problems that lead...
-
Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method
PublicationPurpose The goal of this study was to develop a complete workflow allowing for conducting computational fluid dynam- ics (CFD) simulation of airflow through the upper airways based on computed tomography (CT) and cone-beam computed tomography (CBCT) studies of individual adult patients. Methods This study is based on CT images of 16 patients. Image processing and model generation of the human nasal cavity and paranasal sinuses...
-
The use of a two-phase Monte Carlo material model to reflect the dispersion of asphalt concrete fracture parameters
PublicationThe work covers comprehensive laboratory tests of semi-circular bending (SCB) of asphalt concrete samples. The results of two test series, including four and 32 SCB specimens, indicate a substantial scatter of force–deflection (F-d) histories. The numerical analysis is aimed to reflect the maximum breaking load and fracture energy of the samples, pointing out their random character. The original simulation-based fictitious Monte...
-
Expedited Metaheuristic-Based Antenna Optimization Using EM Model Resolution Management
PublicationDesign of modern antenna systems heavily relies on numerical opti-mization methods. Their primary purpose is performance improvement by tun-ing of geometry and material parameters of the antenna under study. For relia-bility, the process has to be conducted using full-wave electromagnetic (EM) simulation models, which are associated with sizable computational expendi-tures. The problem is aggravated in the case of global optimization,...
-
Numerical Estimation of Hull Hydrodynamic Derivatives in Ship Maneuvering Prediction
PublicationPrediction of the maneuvering characteristics of the ship at the design stage can be done by means of model tests, computational simulations or a combination of both. The model tests can be realized as direct simulation of the standard maneuvers with the free running model, which gives the most accurate results, but is also the least affordable as it requires very large tank or natural lake, as well as complex equipment of the...
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
Fast EM-Driven Nature-Inspired Optimization of Antenna Input Characteristics Using Response Features and Variable-Resolution Simulation Models
PublicationUtilization of optimization technique is a must in the design of contemporary antenna systems. Often, global search methods are necessary, which are associated with high computational costs when conducted at the level of full-wave electromagnetic (EM) models. In this study, we introduce an innovative method for globally optimizing reflection responses of multi-band antennas. Our approach uses surrogates constructed based on response...
-
Young’s modulus distribution in the FEM models of bone tissue
PublicationThis paper presents how differences of Young’s modulus in adjacent finite elements typical for organic materials such as bone tissue, influence stress calculating. Emphasizing high computational cost of variable Young’s modulus in parts of the model, where the number of finite elements has been raised, the authors wants to prove that new model of finite element which has variable Young’s modulus in its volume needs to be created....
-
Objective selection of minimum acceptable mesh refinement for EMC simulations
PublicationOptimization of computational electromagnetics (CEM) simulation models can be costly in both time and computing resources. Mesh refinement is a key parameter in determining the number of unknowns to be processed. In turn, this controls the time and memory required for a simulation. Hence, it is important to use only a mesh that is good enough for the objectives of the simulation, whether for direct handling of high-fidelity EM...
-
Monte Carlo simulations of the fracture resistance of an asphalt pavement layer
PublicationThe purpose of the proposed numerical model is to analyze the cracking of the wearing course in a pavement overlay, assuming a pre-existing crack that passes through the binding layer and base. The computations employed the author's simulation-based Monte Carlo material model, which describes the failure process of a Semi-Circular Bend (SCB) specimen during standard laboratory testing of asphalt concrete. A key feature of this...
-
PROPELLER INVESTIGATIONS BY MEANS OF NUMERICAL SIMULATION
PublicationThe analyses of hydroacoustics are of high interest at the moment due to strong impact of hydroacoustic phenomena on marine environment; the noises, generated e.g. by marine traffic, may be harmful for sea life. The analyses presented here are focused on one of main sources of noises generated by ships, i.e. cavitating propeller. The goal of the work is the assessment of the cavitation phenomenon, carried out with the standard...
-
A technique of experiment aided virtual prototyping to obtain the best spindle speed during face milling of large-size structures
PublicationThe paper presents an original method concerning vibration suppression problem during milling of large-size and geometrically complicated workpieces with the use of novel way of selecting the spindle speed. This consists in repetitive simulations of the cutting process for subsequent values of the spindle speed, until the best vibration state of the workpiece is reached. An appropriate method of obtaining a computational model,...
-
Krzysztof Nyka dr hab. inż.
PeopleKrzysztof Nyka, received MSc (1986) PhD (2002) and DSc (2020) degrees in telecommunication and electrical engineering from the Faculty of Electronics, Telecommunications and Informatics (ETI) of Gdańsk University of Technology (GUT), Poland. He is currently an Associate Professor at the Department of Microwaves and Antenna Engineering, Faculty of ETI, GUT. Before his academic career, he worked for the electronic industry (1984-1986). Research...
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublicationSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Fast geometry scaling of miniaturized microwave couplers with power split correction
PublicationRedesigning a microwave circuit for various operating conditions is a practically important yet challenging problem. The purpose of this article is development and presentation of a technique for fast geometry scaling of miniaturized microwave couplers with respect to operating frequency. Our approach exploits an inverse surrogate model constructed using several reference designs that are optimized for a set of operating frequencies...
-
Numerical analysis of the ostiomeatal complex aeration using the CFD method
PublicationWe aimed to analyse ostiomeatal complex (OMC) aeration using the computational fluid dynamics (CFD) method of simulation based on human craniofacial computed tomography (CT) scans. The analysis was based on CT images of 2 patients: one with normal nose anatomy and one with nasal septal deviation (NSD). The Reynolds-Average Simulation approach and turbulence model based on linear eddy viscosity supplemented with the two-equation...
-
Globalized Simulation-Driven Miniaturization of Microwave Circuits by Means of Dimensionality-Reduced Constrained Surrogates
PublicationSmall size has become a crucial prerequisite in the design of modern microwave components. Miniaturized devices are essential for a number of application areas, including wireless communications, 5G/6G technology, wearable devices, or the internet of things. Notwithstanding, size reduction generally degrades the electrical performance of microwave systems. Therefore, trade-off solutions have to be sought that represent acceptable...
-
Reduced-order models in the finite element analysis
PublicationA novel technique of incorporating macromodels into finite element electromagnetic analysis of waveguide components is presented. Macromodels are generated by using a model order reduction algorithm (ENOR), which results in significant decrease of the number of variables, that describe the computational region. Proposed technique allows for using a few independent macromodels as well as to duplicating one macromodel in many subregions...
-
Flow Process Models for Pipeline Diagnosis
PublicationThis chapter examines the problem of modeling and parameterization of the transmission pipeline flow process. First, the base model for discrete time is presented, which is a reference for other developed models. Then, the diagonal approximation (AMDA) method is proposed, in which the tridiagonal sub-matrices of the recombination matrix are approximated by their diagonal counterparts, which allows for a simple determination of...
-
Modeling energy consumption of parallel applications
PublicationThe paper presents modeling and simulation of energy consumption of two types of parallel applications: geometric Single Program Multiple Data (SPMD) and divide-and-conquer (DAC). Simulation is performed in a new MERPSYS environment. Model of an application uses the Java language with extension representing message exchange between processes working in parallel. Simulation is performed by running threads representing distinct process...
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublicationA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
Rapid EM-driven antenna dimension scaling through inverse modeling
PublicationIn this letter, a computationally feasible technique for dimension scaling of antenna structures is introduced. The proposed methodology is based on inverse surrogate modeling where the geometry parameters of the antenna structure of interest are explicitly related to the operating frequency. The surrogate model is identified based on a few antenna designs optimized for selected reference frequencies. For the sake of computational...
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublicationThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
Fast Multi-Objective Antenna Optimization Using Sequential Patching and Variable-Fidelity EM Models
PublicationIn this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained...
-
Evaluating the mobile robot positions using accelerometer data
PublicationThis paper analyzes the problem of determining the position of a robot using an accelerometer, which is an essential part of inertial measurement units (IMU). The information gained from such a gauge, however, requires double integration of sensor data. To assure an expected effect, a mathematical model of a low-cost accelerometer of the MEMS type is derived. Moreover, in order to improve the performance of positioning based on...
-
Numerical Issues and Approximated Models for the Diagnosis of Transmission Pipelines
PublicationThe chapter concerns numerical issues encountered when the pipeline flow process is modeled as a discrete-time state-space model. In particular, issues related to computational complexity and computability are discussed, i.e., simulation feasibility which is connected to the notions of singularity and stability of the model. These properties are critical if a diagnostic system is based on a discrete mathematical model of the flow...
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublicationSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
Multi-objective antenna design by means of sequential domain patching
PublicationA simple yet robust methodology for rapid multiobjective design optimization of antenna structures has been presented. The key component of our approach is sequential domain patching of the design space which is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs, obtained by means of single-objective optimization runs. The patching process yields the initial approximation of the...
-
Multiobjective Water Distribution Systems Control of Pumping Cost, Water Quality, and Storage-Reliability Constraints
PublicationThis work describes a multiobjective model for trading-off pumping cost and water quality for water distribution systems operation. Constraints are imposed on flows and pressures, on periodical tanks operation, and on tanks storage. The methodology links the multiobjective SPEA2 algorithm with EPANET, and is applied on two example applications of increasing complexity, under extended period simulation conditions and variable energy...
-
Inverse surrogate modeling for low-cost geometry scaling of microwave and antenna structures
PublicationPurpose–The purpose of this paper is to investigate strategies for expedited dimension scaling ofelectromagnetic (EM)-simulated microwave and antenna structures, exploiting the concept of variable-fidelity inverse surrogate modeling.Design/methodology/approach–A fast inverse surrogate modeling technique is described fordimension scaling of microwave and antenna structures. The model is established using referencedesigns obtained...
-
Evaluating the position of a mobile robot using accelerometer data
PublicationThis paper analyses the problem of determining the position of a robot using an accelerometer, which is an essential part of inertial measurement units (IMU). The information gained from such a gauge, however, requires double integration of sensor data. To assure an expected effect, a mathematical model of a low-cost accelerometer of the MEMS type is derived. Moreover, in order to improve the performance of positioning based on...
-
Expedited Design Closure of Antennas By Means Of Trust-Region-Based Adaptive Response Scaling
PublicationIn the letter, a reliable procedure for expedited design optimization of antenna structures by means of trust-region adaptive response scaling (TR-ARS) is proposed. The presented approach exploits two-level electromagnetic (EM) simulation models. A predicted high-fidelity model response is obtained by applying nonlinear frequency and amplitude correction to the low-fidelity model. The surrogate created this way is iteratively rebuilt...
-
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
Numerical simulation of asphalt mixtures fracture using continuum models
PublicationThe paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasicontinuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate...
-
Neural Network-Based Sequential Global Sensitivity Analysis Algorithm
PublicationPerforming global sensitivity analysis (GSA) can be challenging due to the combined effect of the high computational cost, but it is also essential for engineering decision making. To reduce this cost, surrogate modeling such as neural networks (NNs) are used to replace the expensive simulation model in the GSA process, which introduces the additional challenge of finding the minimum number of training data samples required to...
-
Wybrane aspekty modelowania uderzenia pojazdem dźwigara wiaduktu
PublicationW pracy przedstawiono różne zagadnienia związane z uderzeniem pojazdu w dźwigar wiaduktu. Omówiono wybór modelu obliczeniowego, na podstawie porównania wyników dla modelu dźwigara zespolonego, modelu dźwigara stalowego oraz modelu wiaduktu. Następnie opisano model dźwigara zespolonego zastosowany w analizie MES oraz metodę wyznaczania współczynników tłumienia Rayleigha. Symulację numeryczną uderzenia dźwigara wiaduktu przez koparkę...
-
Identification of Unstable Reference Points and Estimation of Displacements Using Squared Msplit Estimation
PublicationThe article presents a new version of the method for estimating parameters in a split functional model, which enables the determination of displacements of geodetic network points with constrained datum. The main aim of the study is to present theoretical foundations of Msplit CD estimation and its basic properties and possible applications. Particular attention was paid to the efficacy of the method in the context of geodetic...
-
Comparative Study of Integer and Non-Integer Order Models of Synchronous Generator
PublicationThis article presents a comparison between integer and non-integer order modelling of a synchronous generator, in the frequency domain as well as in the time domain. The classical integer order model was compared to one containing half -order systems. The half-order systems are represented in a Park d-q axis equivalent circuit as impedances modelled by half-order transmittances. Using a direct method based on the approximation...
-
Semantics for an Interdisciplinary Computation
PublicationSemantics for an interdisciplinary computation is becoming increasingly difficult to capture while dealing with multi-domain problems. Expertise from Computer Science, Computer Engineering, Electrical Engineering, and other disciplines merges as engineering challenges in modern systems, such as, Cyber-Physical Systems, Smart Cities, and Bionic Systems must be tackled in a methodological manner. In this paper, a paradigm for formalization...
-
Modeling nutrient removal and energy consumption in an advanced activated sludge system under uncertainty
PublicationActivated sludge models are widely used to simulate, optimize and control performance of wastewater treatment plants (WWTP). For simulation of nutrient removal and energy consumption, kinetic parameters would need to be estimated, which requires an extensive measurement campaign. In this study, a novel methodology is proposed for modeling the performance and energy consumption of a biological nutrient removal activated sludge system...
-
Multi-Objective Water Distribution Systems Control of Pumping Cost, Water Quality, and Storage-Reliability Constraints
PublicationThis work describes a multi-objective model for trading-off pumping cost and water quality for water distribution systems operation. Constraints are imposed on flows and pressures, on periodical tanks operation, and on tanks storage. The methodology links the multi-objective SPEA2 algorithm with EPANET, and is applied on two example applications of increasing complexity, under extended period simulation conditions and variable...
-
Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine
PublicationA small Counter-Rotating Wind Turbine (CRWT) has been proposed and its performancehas been investigated numerically. Results of a parametric study have been presented in this paper.As parameters, the axial distance between rotors and a tip speed ratio of each rotor have been selected.Performance parameters have been compared with reference to a Single Rotor Wind Turbine (SRWT).Simulations were carried out with Computational Fluids...