displaying 1000 best results Help
Search results for: ELECTRON-MOLECULE SCATTERING
-
Dipole-driven dynamics for near-threshold electron/positron interactions with pyrimidinic DNA bases: a path to compound formations
PublicationCalculations are reported for electron and positron scattering from isolated cytosine and thymine, where the two pyrimidinic single-ring DNA bases, in the gas-phase at energies near the elastic threshold, they reveal the special features of the dipole-driven scattering states. All molecules examined exhibit, in fact, supercritical (>1.67 D) permanent dipoles which can therefore also support, below threshold, excited bound compound...
-
Elastic scattering of electrons from chloroform
PublicationWe present experimental and theoretical cross sections for elastic electron scattering from CHCl3. This is an important target because of its relevance to environmental chemistry and the plasma etching industry as a source of chlorine radicals. The experimental results were obtained at incident electron energies ranging from 0.5 to 800 eV in the 10deg-130deg scattering angle range. Theoretically, the scattering cross sections in...
-
The 41Σ+ electronic state of LiCs molecule
PublicationThe 41Σ+ state of LiCs molecule is observed experimentally for the first time. The inverted perturbation approach (IPA) method is used to derive the potential energy curve of the state from the measured spectra. The experiment is accompanied by theoretical calculations of adiabatic potentials for excited states in LiCs including 41Σ+, performed with the MOLPRO program package. The irregular shape of the 41Σ+ state potential predicted...
-
Excited states of isoxazole molecules studied by electron energy-loss spectroscopy
PublicationElectron energy-loss spectra were measured in isoxazole in the excitation energy range 3.5−10 eV to investigate the valence excited states. Spectra recorded at different scattering conditions enabled the identification of the singlet and triplet states and the determination of their vertical excitation energies. The two lowest energy triplet bands, ππ* 13A' and ππ* 23A' at 4.20 and 5.30 eV, respectively show vibrational progressions....
-
Elastic scattering of electrons by water: An ab initio study
PublicationIn this work we devise a theoretical and computational method to compute the elastic scattering of electrons from a non-spherical potential, such as in the case of molecules and molecular aggregates. Its main feature is represented by the ability of calculating accurate wave functions for continuum states of polycentric systems via the solution of the Lippmann-Schwinger equation, including both the correlation effects and multi-scattering...
-
Methylation effect in e−— scattering on methyl-substituted ethylenes
PublicationMethylation effect has been observed and studied in electron-scattering from selected hydrocarbon molecules. In measured total cross section (TCS) functions we have noticed energy shifts and changes in the intensity of observed structures.
-
Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering
PublicationWe present an alternative to the conventional approach, phantoms without scattering nanoparticles, where scattering is achieved by the material itself: spherical cavities trapped in a silicone matrix. We describe the properties and fabrication of novel optical phantoms based on a silicone elastomer polydimethylsiloxane (PDMS) and glycerol mixture. Optical properties (absorption coefficient µa, reduced scattering coefficient µs',...
-
Low energy electron mass stopping power in H2
PublicationWe present experimental mass stopping powers of electrons in gaseous H2 obtained with a newly developed electron time-of-flight spectrometer, for the incident electron energy range of 10eV to 25eV. In our procedure the average energy loss is derived from our conversion of measured electron time-of-flight spectra into equivalent electron energy loss spectra so as to obtain the values of mass stopping power for electron scattering...
-
Bounds on isolated scattering number
PublicationThe isolated scattering number is a parameter that measures the vulnerability of networks. This measure is bounded by formulas de- pending on the independence number. We present new bounds on the isolated scattering number that can be calculated in polynomial time.
-
Bounds on isolated scattering number
PublicationThe isolated scattering number is a parameter that measures the vulnerability of networks. This measure is bounded by formulas de- pending on the independence number. We present new bounds on the isolated scattering number that can be calculated in polynomial time.
-
Normalized Partial Scattering Cross Section for Performance Evaluation of Low-Observability Scattering Structures
PublicationThe development of diffusion metasurfaces created new opportunities to elevate the stealthiness of combat aircraft. Despite the potential significance of metasurfaces, their rigorous design methodologies are still lacking, especially in the context of meticulous control over the scattering of electromagnetic (EM) waves through geometry parameter tuning. Another practical issue is insufficiency of the existing performance metrics,...
-
The Role of Molecular Structure in Monte Carlo Simulations of the Secondary Electron Yield and Backscattering Coefficient from Methacrylic Acid
PublicationIn this paper, we show the influence of the chemical structure of four different conformers on the secondary electron emission and backscattering of an electron beam from a gel of methacrylic acid. The conformers have different permanent dipole moments, which determines the cross sections for elastic collisions with electrons. The cross sections are used in Monte Carlo simulations of an electron beam, which enters the gel of methacrylic...
-
Theoretical studies of fragmentation processes of neutral and ionized furan molecule
PublicationThis PhD thesis focuses on the fragmentation mechanism of the furan molecule in the gas phase. The approach taken in this work comprised of three theoretical methodologies considering the dynamical, energetical and entropic aspects of the studied process. First, molecular dynamics simulations were performed. Next, the potential energy surfaces were explored at the DFT/B3LYP level of theory. Finally, a new statistical Microcanonical...
-
Charge dependence of fragmentation process induced by ion collisions with furan molecule
PublicationThe goal of this work is to describe the system evolution after ion-molecule interaction. We combine different quantum chemistry and statistical mechanics approaches in order to give extended description of the process. Herein we report on a recent study of the fragmentation mechanism of neutral, singly- and doubly-ionized furan molecule in the gas phase.
-
Low-energy positron collisions with water: elastic and rotationally inelastic scattering
PublicationDifferential, integral and momentum transfer cross sections for the vibrationally elastic and rotationally inelastic scattering of positrons from water at low collision energy (E ≤ 10 eV) are reported. Several models within the R-matrix method are used to compute the body-fixed T-matrices, while the scattering calculations are performed within the fixed-nuclei approximation corrected with the standard Born-closure formula. These...
-
Determination of energy-transfer distributions in ionizing ion-molecule collisions
PublicationThe main objective of this study is to determine the energy transfer occuring in ion-molecule collisions. In order to solve this problem, we followed two approaches; the first one by validating a purely experimental method and the second one by testing a new theoretical model M3C (Microcanonical Metropolis Monte Carlo).
-
The adiabatic potentials of low-lying electronic states of the NaRb molecule
PublicationAdiabatic potential energy curves and spectroscopic constants have been calculated for the NaRb molecule. The results of ten states of the symmetry Σ+, six states of the symmetry Π, and two states of the symmetry Δ are obtained by the nonrelativistic quantum chemical method used with pseudopotentials describing the interaction of valence electrons with atomic cores. Analysis is based on a comparison with the results of other theoretical...
-
Water-mediated influence of a crowded environment on internal vibrations of a protein molecule
PublicationThe influence of crowding on the protein inner dynamics is examined by putting a single protein molecule close to one or two neighboring protein molecules. The presence of additional molecules influences the amplitudes of protein fluctuations. Also, a weak dynamical coupling of collective velocities of surface atoms of proteins separated by a layer of water is detected. The possible mechanisms of these phenomena are described....
-
A semiempirical model for low energy electron–atom transport cross sections: The case of noble gases
PublicationA semiempirical approach to describe low energy electron–atom transport cross sections of easy implementation and reproduction is presented. The heart of the model is an energy independent two-parameter potential that was adjusted to reproduce the accurate total cross sections for He, Ne, Ar and Kr, measured with a threshold photoelectron source technique from meV up to 20 eV. Once the potential was conceived, the model was validated...
-
Theoretical and experimental study on scattering of low-energy electrons by dimethyl and diethyl ethers
PublicationWe report a joint theoretical and experimental investigation on low-energy electron scattering by dimethyl and diethyl ethers. The experimental elastic differential cross sections were measured at impact energies from 1 eV up to 30 eV and scattering angle range of 10◦ to 130◦. Theoretical elastic differential, integral and momentum-transfer cross sections are calculated at impact energies up to 30 eV, employing the Schwinger multichannel...
-
Electronic states of tetrahydrofuran molecules studied by electron collisions
PublicationElectronic states of tetrahydrofuran molecules were studied in the excitation energy range 5.5-10 eV using the technique of electron energy loss spectroscopy in the gas phase. Excitation from the two conformations, C2 and Cs, of the ground state of the molecule are observed in the measured energy loss spectra. The vertical excitation energies of the 3(no3s) triplet state from the C2 and Cs conformations of the ground state of the...
-
A study of the electronic states of pyrimidine by electron energy loss spectroscopy
PublicationThe electron energy loss spectra were measured in pyrimidine at the constant electron residual energy varied from 15 meV to 10 eV and in the scattering angle range 0–180°. The spectra were analysed applying an iteration fitting procedure to resolve the energy loss bands corresponding to excitation of the electronic states of pyrimidine. The vertical excitation energies of the singlet states of pyrimidine and of a number of the...
-
Dissociative electron attachment and anion-induced dimerization in pyruvic acid
PublicationWe report partial cross sections for the dissociative electron attachment to pyruvic acid. A rich fragmentation dynamics is observed. Electronic structure calculations facilitate the identification of complex rearrangement reactions that occur during the dissociation. Furthermore, a number of fragment anions produced at electron energies close to 0 eV are observed, that cannot originate from single electron-molecule collisions....
-
Electron energy-loss spectroscopy of excited states of the pyridine molecules
PublicationElectron energy-loss spectra of the pyridine, C5H5N, molecules in the gas phase have been measured to investigate electronic excitation in the energy range 3.5–10 eV. The applied wide range of residual electron energy and the scattering angle range from 10 ◦ to 180 ◦ enabled to differentiate between optically-allowed and -forbidden transitions. These measurements have allowed vertical excitation energies of the triplet excited...
-
ELECTRON-IMPACT IONIZATION CROSS SECTIONS CALCULATIONS FOR PURINE AND PYRIMIDINE MOLECULES
PublicationCross sections for electron-impact ionization of purine and pyrimidine molecules have been calculated using binary-encounter-Bethe method for electron energies ranging from the ionization threshold up to 5 keV. Ionization cross section for purine molecules is 1.4 times higher than for pyrimidine molecules. Acceptable agreement between experimental and theoretical ionization data for pyrimidine molecule has been found.
-
Electron ionization and low energy electron attachment to molecules of biological interest
PublicationEthylenediaminetetraacetic acid (EDTA) and 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) were investigated by electron impact ionization and low energy electron attachment. Both compounds are components of biological buffers and often are used as DNA stabilizers in irradiation studies. hus it is of a great importance to understand their potential interactions with radiation. Our results revealed that at least one of them, EDTA, may...
-
Electron ionization and low energy electron attachment to molecules of biological interest
PublicationEthylenediaminetetraacetic acid (EDTA) and 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) were investigated by electron impact ionization and low energy electron attachment. Both compounds are components of biological buffers and often are used as DNA stabilizers in irradiation studies. hus it is of a great importance to understand their potential interactions with radiation. Our results revealed that at least one of them, EDTA, may...
-
Application of the J-matrix method to multichannel scattering
PublicationIn this contribution we describe the multichannel extension to the nonrelativistic J-matrix method, and present differential cross sections for scattering of slow electrons from Argon atoms. Nonrelativistic phase shifts, then the S-matrix and the cross sections have been calculated using newly developed Fortran code, JMATRIX-MULTI.We applied the model Hartree-Fock potential as the scattering potential, which was truncated in the...
-
Magnetic switching of Kerker scattering in spherical microresonators
PublicationMagneto-optical materials have become a key tool in functional nanophotonics, mainly due to their ability to offer active tuning between two different operational states in subwavelength structures. In the long-wavelength limit, such states may be considered as the directional forward- and back-scattering operations, due to the interplay between magnetic and electric dipolar modes, which act as equivalent Huygens sources. In this...
-
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
Journals -
Experimental and Theoretical Study on Electron Interactions with Acetic Acid Molecules
PublicationThe absolute total cross section for electron collisions with acetic acid has been measured using an electrostatic electron spectrometerand linear transmission method for collision energies ranging from 0.4 to 300eV. Elastic electron scattering from acetic acid within a low-energy range has also been studied theoretically using the Schwinger multichannel and R-matrix methods, in the static-exchange and static-exchange plus polarization...
-
Positron Scattering and Annihilation in Organic Molecules
PublicationIn this paper, we address the problem of connecting positron lifetimes in liquids with collision cross sections in gases. We present the analyses of annihilation lifetime spectra of positrons in the liquid benzene, c-hexane, n-hexane, methanol and ethanol and calculations of scattering cross sections of positrons with benzene and c-hexane in the gas phase.
-
A Stand for Measurement and Prediction of Scattering Properties of Diffusers
PublicationIn this paper we present a set of solutions which may be used for prototyping and simulation of acoustic scattering devices. A system proposed is capable of measuring sound field. Also a way to use an open source solution for simulation of scattering phenomena occurring in proximity of acoustic diffusers is shown. The result of our work are measurement procedure and a prototype of the simulation script based on FEniCS - an open source...
-
Possible schemes of photoassociation processes in the KLi molecule with newly calculated potential energy curves
PublicationWe present four promising schemes for photoassociative formation of KLi molecule in its ground electronic state. Analysis is based on newly calculated adiabatic potentials supported by transition dipole moments and Franck-Condon factors.
-
Maciej Wróbel dr inż.
PeopleReceived PhD from Gdańsk University of Technology in 2019. Research interests involve non-invasive applications of Raman spectroscopy for tissue analysis, specifically blood parameters measurements. Tissue mimicking phantoms, measurement of optical properties (scattering, absorption), as well as other optical sensing methods. Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) utilized for measurements of biological...
-
Long-range, water-mediated interaction between a moderately active antifreeze protein molecule and the surface of ice
PublicationUsing molecular dynamics simulations, we show that a molecule of moderately active antifreeze protein (type III AFP, QAE HPLC-12 isoform) is able to interact with ice in an indirect manner. This interaction occurs between the ice binding site (IBS) of the AFP III molecule and the surface of ice, and it is mediated by liquid water which separates these surfaces. As a result, the AFP III molecule positions itself at a specific orientation...
-
Carboxylation Enhances Fragmentation of Furan upon Resonant Electron Attachment
PublicationWe report a dissociative electron attachment study to 2-furoic acid (C5H4O3) isolated in a gas phase, which is a model molecule consisting of a carboxylic group and a furan ring. Dissociation of furan by low energy electrons is accessible only via electronic excited Feshbach resonances at energies of incident electrons above 5 eV. On the other hand, carboxylic acids are well- known to dissociate via attachment of electrons at subexcitation energies....
-
JOURNAL OF ELECTRON MICROSCOPY
Journals -
Low-energy positron scattering from gas-phase benzene
PublicationIn this paper we are presenting calculations of the elastic cross section of positrons with gas-phase benzene for the energy range from 0.25 eV to 9.0 eV. The calculations are done with the molecular R-matrix method for positron-scattering from poly-atomic molecules using a scaling factor to scale the electron-positron interaction. The scaling factor influences the position of the poles of the R-matrix. We adjust the scaling factor...
-
Anionic states of C6Cl6 probed in electron transfer experiments
PublicationThis is the first comprehensive investigation on the anionic species formed in collisions of fast neutral potassium (K) atoms with neutral hexachlorobenzene (C6Cl6) molecules in the laboratory frame range from 10 up to 100 eV. In such ion-pair formation experiments, we also report a novel K+ energy loss spectrum obtained in the forward scattering giving evidence of the most accessible electronic states. The vertical electron affinity...
-
Dissociative Electron Attachment to 5-Iodo-4-thio-2′-deoxyuridine: A Potential Radiosensitizer of Hypoxic Cells
PublicationIn the search for effective radiosensitizers for tumor cells, halogenated uracils have attracted more attention due to their large cross section for dissociation upon the attachment of low-energy electrons. In this study, we investigated dissociative electron attachment (DEA) to 5-iodo-4-thio-2'-deoxyuridine, a potential radiosensitizer using a crossed electron-molecule beam experiment coupled with quadrupole mass spectrometry....
-
A large family of filled skutterudites stabilized by electron count
PublicationThe Zintl concept is important in solid-state chemistry to explain how some compounds that combine electropositive and main group elements can be stable at formulas that at their simplest level do not make any sense. The electronegative elements in such compounds form a polyatomic electron-accepting molecule inside the solid, a ‘polyanion’, that fills its available energy states with electrons from the electropositive elements...
-
A correlation between electron-hole pair radii and magnetomodulation of exciplex fluorescence in electron donor-electron acceptor organic systems
PublicationElectric field dependencies of electromodulated photoluminescence and magnitudes of the magnetic-field effect on photoluminescence havebeen measured in vacuum-evaporated films of m-MTDATA [4,4',4"-tris(N-(3-methylphenyl)-N-phenylamino)triphenylamine]:bathophe-nanthroline, m-MTDATA:BCP (bathocuproine), as well as 4,4',4"-tris[2-naphthyl(phenyl)amino]triphenylamine:BCP. The Sano-Tachiya-Noolandi-Hong extension of standard Onsager...
-
[NF] Physical Research Methods III: Scattering Theory
e-Learning Courses{mlang pl} Dyscyplina: NF Zajęcia obowiązkowe dla doktorantów II i III roku Prowadzący: Prof. Simone Taioli Liczba godzin: 15 Forma zajęć: wykład/seminarium {mlang} {mlang en} Discipline: NF Obligatory course for 2-nd and 3-rd year PhD students Academic teacher: Prof. Simone Taioli Total hours of training: 15 teaching hours Course type: lecture/seminar {mlang}
-
Electron attachment to hexafluoropropylene oxide (HFPO)
PublicationWe probe the electron attachment in hexafluoropropylene oxide (HFPO), C3F6O, a gas widely used in plasma technologies. We determine the absolute electron attachment cross section using two completely different experimental approaches: (i) a crossed-beam experiment at single collision conditions (local pressures of 5 × 10−4 mbar) and (ii) a pulsed Townsend experiment at pressures of 20–100 mbar. In the latter method, the cross sections...
-
Evidence for solid state electrochemical degradation within a small molecule OLED
PublicationAcridone derivative have been synthesised and used as OLED (Organic Light Emitting Diode) emitters which were found to be electroactive. Electrochemical investigations showed a side reaction takes place inside an active layer which diminished the overall device efficiency. By using a dopant and host active layer architecture, the formation of the by product was removed. The by-product was identified as a σ-dimer formed inside an...
-
Elastic scattering and rotational excitation of Li2 by positron impact
Publication -
KOLMOGOROV EQUATION SOLUTION: MULTIPLE SCATTERING EXPANSION AND PHOTON STATISTICS EVOLUTION MODELING
PublicationWe consider a formulation of the Cauchy problem for the Kolmogorov equation which corresponds to a localized source of particles to be scattered by a medium with a given scattering amplitude density. The multiple scattering amplitudes are introduced and the corresponding series solution of the equation is constructed. We investigate the integral representation for the first series terms, its estimations and values of the photon...
-
Convergence of Monte Carlo algorithm for solving integral equations in light scattering simulations
PublicationThe light scattering process can be modeled mathematically using the Fredholm integral equation. This equation is usually solved after its discretization and transformation into the system of algebraic equations. Volume integral equations can be also solved without discretization using the Monte Carlo (MC) algorithm, but its application to the light scattering simulations has not been sufficiently studied. Here we present implementation...
-
Calculations of Cross-Sections for Positron Scattering on Benzene
PublicationIn this work, we present a theoretical study on positron scattering by benzene molecules over a broad energy range (1–1000 eV). The aim of this work is to provide missing data from partial cross-sections for specific processes. In particular, calculations of cross-sections for direct ionization and electronic excitation were carried out for benzene molecules in the gas phase. An estimate for the cross-section for positronium formation...