Search results for: neural efficiency - Bridge of Knowledge

Search

Search results for: neural efficiency

Search results for: neural efficiency

  • Heavy duty vehicle fuel consumption modelling using artificial neural networks

    Publication

    - Year 2019

    In this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...

    Full text available to download

  • Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition

    Publication
    • E. Solomon
    • J. Kragiel
    • M. R. Sperling
    • A. Sharan
    • G. Worrell
    • M. T. Kucewicz
    • C. S. Inman
    • B. Lega
    • K. A. Davis
    • J. M. Stein... and 5 others

    - Nature Communications - Year 2017

    The idea that synchronous neural activity underlies cognition has driven an extensive body of research in human and animal neuroscience. Yet, insufficient data on intracranial electrical connectivity has precluded a direct test of this hypothesis in a whole-brain setting. Through the lens of memory encoding and retrieval processes, we construct whole-brain connectivity maps of fast gamma (30-100 Hz) and slow theta (3-8 Hz) spectral...

    Full text available to download

  • Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation

    Publication

    The aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...

  • Pose classification in the gesture recognition using the linear optical sensor

    Publication

    Gesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...

    Full text to download in external service

  • A Simple Neural Network for Collision Detection of Collaborative Robots

    Publication

    Due to the epidemic threat, more and more companies decide to automate their production lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic production robots. The solution to this problem is the use of collaborative robots (cobots). However, the required equipment (force sensors) or alternative methods of detecting a threat to humans are usually quite expensive. The article presents...

    Full text available to download

  • Fault detection in measuring systems of power plants

    Publication

    This paper describes possibility of forming diagnostic relations based on application of the artifical neural networks (ANNs), intended for the identifying of degradation of measuring instruments used in developed power systems. As an example a steam turbine high-power plant was used. And, simulative calculations were applied to forming diagnostic neural relations. Both degradation of the measuring instruments and simultaneously...

    Full text available to download

  • Video of LEGO Bricks on Conveyor Belt Dataset Series

    Publication

    - Year 2022

    The dataset series titled Video of LEGO bricks on conveyor belt is composed of 14 datasets containing video recordings of a moving white conveyor belt. The recordings were created using a smartphone camera in Full HD resolution. The dataset allows for the preparation of data for neural network training, and building of a LEGO sorting machine that can help builders to organise their collections.

    Full text available to download

  • Creating a radiological database for automatic liver segmentation using artificial intelligence.

    Publication

    - EJSO-EUR J SURG ONC - Year 2022

    Imaging in medicine is an irreplaceable stage in the diagnosis and treatment of cancer. The subsequent therapeutic effect depends on the quality of the imaging tests performed. In recent years we have been observing the evolution of 2D to 3D imaging for many medical fields, including oncological surgery. The aim of the study is to present a method of selection of radiological imaging tests for learning neural networks.

    Full text to download in external service

  • Influence of accelerometer signal pre-processing and classification method on human activity recognition

    A study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy. In the test four methods of classification were used: support vector machine, decision trees, neural network, k-nearest neighbor.

    Full text to download in external service

  • Multifunctional PID Neuro-Controller for Synchronous Generator

    This paper deals with a PID Neuro-Controller (PIDNC) for synchronous generator system. The controller is based on artificial neural network and adaptive control strategy. It ensures two functions: maintaining the generator voltage at its desired value and damping electromechanical oscillations. The performance of the proposed controller is evaluated on the basis of simulation tests. A comparative study of the results obtained with...

    Full text available to download

  • Automatic Breath Analysis System Using Convolutional Neural Networks

    Publication

    Diseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is common for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as...

    Full text to download in external service

  • Development of a tropical disease diagnosis system using artificial neural network and GIS

    Publication

    - Year 2021

    Expert systems for diagnosis of tropical diseases have been developed and implemented for over a decade with varying degrees of success. While the recent introduction of artificial neural networks has helped to improve the diagnosis accuracy of such systems, this aspect is still negatively affected by the number of supported diseases. A large number of supported diseases usually corresponds to a high number of overlapping symptoms,...

    Full text to download in external service

  • Automatic Breath Analysis System Using Convolutional Neural Networks

    Publication

    Diseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected...

    Full text to download in external service

  • Automatic labeling of traffic sound recordings using autoencoder-derived features

    Publication

    An approach to detection of events occurring in road traffic using autoencoders is presented. Extensions of existing algorithms of acoustic road events detection employing Mel Frequency Cepstral Coefficients combined with classifiers based on k nearest neighbors, Support Vector Machines, and random forests are used. In our research, the acoustic signal gathered from the microphone placed near the road is split into frames and converted...

  • Bees Detection on Images: Study of Different Color Models for Neural Networks

    Publication

    This paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...

    Full text available to download

  • Speech Analytics Based on Machine Learning

    Publication

    In this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...

    Full text to download in external service

  • Automatic music set organizatio based on mood of music / Automatyczna organizacja bazy muzycznej na podstawie nastroju muzyki

    This work is focused on an approach based on the emotional content of music and its automatic recognition. A vector of features describing emotional content of music was proposed. Additionally, a graphical model dedicated to the subjective evaluation of mood of music was created. A series of listening tests was carried out, and results were compared with automatic mood recognition employing SOM (Self Organizing Maps) and ANN (Artificial...

    Full text to download in external service

  • Document Agents with the Intelligent Negotiations Capability

    Publication

    The paper focus is on augmenting proactive document-agents with built -in intelligence to enable them to recognize execution context provided by devices visited durning the business process, and to reach collaboration agreement despite of their conflicting requirements. We propose a solution based on neural networks to improve simple multi-issue negotiation between the document and the device, practically with no excessive cost...

  • A Novel Method for the Deblurring of Photogrammetric Images Using Conditional Generative Adversarial Networks

    Publication

    The visual data acquisition from small unmanned aerial vehicles (UAVs) may encounter a situation in which blur appears on the images. Image blurring caused by camera motion during exposure significantly impacts the images interpretation quality and consequently the quality of photogrammetric products. On blurred images, it is difficult to visually locate ground control points, and the number of identified feature points decreases...

    Full text available to download

  • A compact smart sensor based on a neural classifier for objects modeled by Beaunier's model

    A new solution of a smart microcontroller sensor based on a simple direct sensor-microcontroller interface for technical objects modeled by two-terminal networks and by the Beaunier’s model of anticorrosion coating is proposed. The tested object is stimulated by a square pulse and its time voltage response is sampled four times by the internal ADC of microcontroller. A neural classifier based on measurement data classifies the...

    Full text available to download

  • Emotion Recognition from Physiological Channels Using Graph Neural Network

    In recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The...

    Full text available to download

  • Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition

    Publication

    - Gazi University Journal of Science - Year 2022

    Predictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...

    Full text to download in external service

  • Semantic segmentation training using imperfect annotations and loss masking

    One of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...

    Full text to download in external service

  • Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening

    Publication

    - MOLECULES - Year 2020

    Beta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...

    Full text available to download

  • Diagnosing wind turbine condition employing a neural network to the analysis of vibroacoustic signals

    It is important from the economic point of view to detect damage early in the wind turbines before failures occur. For this purpose, a monitoring device was built that analyzes both acoustic signals acquired from the built-in non-contact acoustic intensity probe, as well as from the accelerometers, mounted on the internal devices in the nacelle. The signals collected in this way are used for long-term training of the autoencoder...

    Full text available to download

  • Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions

    Publication

    - Year 2018

    With the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...

    Full text to download in external service

  • Self-Supervised Learning to Increase the Performance of Skin Lesion Classification

    To successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...

    Full text available to download

  • An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks

    Publication

    - Journal of Artificial Intelligence and Soft Computing Research - Year 2023

    In this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...

    Full text available to download

  • Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network

    Artificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper pesents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to...

    Full text available to download

  • Control of the cultivation of cartilages for using in the biobearings.

    Publication

    - Year 2004

    Biotribologiczne charakterystyki biołożysk są zależne od procesu hodowli żywej tkanki chrząstki w bioreaktorze. Z kolei proces ten, jest wielowymiarowym procesem dynamicznym sterowanym za pomocą odpowiedniego układu automatycznej regulacji. Praca przedstawia prawo i algorytm sterowania takiego procesu. W tym celu zastosowano sztuczne sieci neuronowe (Artificial Neural Networks - ANN) i zaprezentowano wyniki obliczeń.

  • Design of Microstrip UWB Balun Using Quasi-TEM Approach Aided by the Artificial Neural Network

    Publication

    The design procedure for UWB balun realized in the microstrip technology is proposed in the paper. The procedure applies Artificial Neural Network which corrects the dimensions of the approximate design found by appropriate scaling of the dimensions of the prototype. The scale coefficients for longitudinal and transverse dimensions of microstrip lines are determined from electromagnetic modeling based on transmission line equations....

    Full text to download in external service

  • Adaptive CAD-Model Construction Schemes

    Two advanced surrogate model construction techniques are discussed in this paper. The models employ radial basis function (RBF)interpolation scheme or artificial neural networks (ANN) with a new training algorithm. Adaptive sampling technique is applied withrespect to all variables. Histograms showing the quality of the models are presented. While the quality of RBF models is satisfactory, theperformance of the ANN models obtained...

    Full text to download in external service

  • A method of self-testing of analog circuits based on fully differential op-amps with theTCBF classifier

    Publication

    - Year 2015

    A new approach of self-testing of analog circuits based on fully differential op-amps of mixed-signal systems controlled by microcontrollers is presented. It consists of a measurement procedure and a fault diagnosis procedure. We measure voltage samples of a time response of a tested circuit on a stimulation of a unit step function given at the common-mode reference voltage input of the op-amp. The fault detection and fault localization...

    Full text to download in external service

  • Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier

    Publication
    • A. Stateczny
    • S. C. Narahari
    • P. Vurubindi
    • N. S. Guptha
    • K. Srinivas

    - Remote Sensing - Year 2023

    The economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...

    Full text available to download

  • Optimized Deep Learning Model for Flood Detection Using Satellite Images

    Publication
    • A. Stateczny
    • H. D. Praveena
    • R. H. Krishnappa
    • K. R. Chythanya
    • B. B. Babysarojam

    - Remote Sensing - Year 2023

    The increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...

    Full text available to download

  • Automatic singing quality recognition employing artificial neural networks

    Publication

    Celem artykułu jest udowodnienie możliwości automatycznej oceny jakości technicznej głosów śpiewaczych. Pokrótce zaprezentowano w nim stworzoną bazę danych głosów śpiewaczych oraz zaimplementowane parametry. Przy pomocy sztucznych sieci neuronowych zaprojektowano system decyzyjny, który oceniono w pięciostopniowej skali jakość techniczną głosu. Przy pomocy metod statystycznych udowodniono, że wyniki generowane przez ten system...

    Full text available to download

  • Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions

    In this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...

  • The role of EMG module in hybrid interface of prosthetic arm

    Nearly 10% of all upper limb amputations concern the whole arm. It affects the mobility and reduces the productivity of such a person. These two factors can be restored by using prosthetics. However, the complexity of human arm makes restoring its basic functions quite difficult. When the osseointegration and/or targeted muscle reinnervation (TMR) are not possible, different modalities can be used to control the prosthesis. In...

    Full text to download in external service

  • Experience-Based Cognition for Driving Behavioral Fingerprint Extraction

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2020

    ABSTRACT With the rapid progress of information technologies, cars have been made increasingly intelligent. This allows cars to act as cognitive agents, i.e., to acquire knowledge and understanding of the driving habits and behavioral characteristics of drivers (i.e., driving behavioral fingerprint) through experience. Such knowledge can be then reused to facilitate the interaction between a car and its driver, and to develop better and...

    Full text available to download

  • A Method for Optimising the Blade Profile in Kaplan Turbine

    Publication

    - Year 2011

    This paper introduces a method of blade profile optimisation for Kaplan-type turbines, based on modelling the interaction between rotor and stator blades. Rotor and stator blade geometry is described mathematically by means of a midline curve and thickness distribution. Genetic algorithms are then used to find a global optimum that minimises the loss coefficient. This allows for variety of possible blade shapes and configurations....

  • Fast Approximate String Search for Wikification

    Publication

    The paper presents a novel method for fast approximate string search based on neural distance metrics embeddings. Our research is focused primarily on applying the proposed method for entity retrieval in the Wikification process, which is similar to edit distance-based similarity search on the typical dictionary. The proposed method has been compared with symmetric delete spelling correction algorithm and proven to be more efficient...

    Full text available to download

  • Selection of Features for Multimodal Vocalic Segments Classification

    Publication

    English speech recognition experiments are presented employing both: audio signal and Facial Motion Capture (FMC) recordings. The principal aim of the study was to evaluate the influence of feature vector dimension reduction for the accuracy of vocalic segments classification employing neural networks. Several parameter reduction strategies were adopted, namely: Extremely Randomized Trees, Principal Component Analysis and Recursive...

    Full text to download in external service

  • Knowledge representation of motor activity of patients with Parkinson’s disease

    An approach to the knowledge representation extraction from biomedical signals analysis concerning motor activity of Parkinson disease patients is proposed in this paper. This is done utilizing accelerometers attached to their body as well as exploiting video image of their hand movements. Experiments are carried out employing artificial neural networks and support vector machine to the recognition of characteristic motor activity...

    Full text available to download

  • Determination of chlorine concentration using single temperature modulated semiconductor gas sensor

    A periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neural...

    Full text to download in external service

  • BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES

    In this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...

    Full text available to download

  • AUTOMATED NEGOTIATIONS OVER COLLABORATION PROTOCOL AGREEMENTS

    Publication

    - Year 2015

    The dissertation focuses on the augmentation of proactive document - agents with built-in intelligence to recognize execution context provided by devices visited during a business process, and to reach collaboration agreement despite conflicting requirements. The proposed solution, based on intelligent bargaining using neural networks to improve simple multi-issue negotiation between the document and thedevice, requires practically...

  • Previous Opinions is All You Need - Legal Information Retrieval System

    Publication

    - Year 2023

    We present a system for retrieving the most relevant legal opinions to a given legal case or question. To this end, we checked several state-of-the-art neural language models. As a training and testing data, we use tens of thousands of legal cases as question-opinion pairs. Text data has been subjected to advanced pre-processing adapted to the specifics of the legal domain. We empirically chose the BERT-based HerBERT model to perform...

    Full text to download in external service

  • Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics

    Publication

    - Year 2020

    Remote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...

    Full text available to download

  • Categorization of emotions in dog behavior based on the deep neural network

    The aim of this article is to present a neural system based on stock architecture for recognizing emotional behavior in dogs. Our considerations are inspired by the original work of Franzoni et al. on recognizing dog emotions. An appropriate set of photographic data has been compiled taking into account five classes of emotional behavior in dogs of one breed, including joy, anger, licking, yawning, and sleeping. Focusing on a particular...

    Full text available to download

  • Towards bees detection on images: study of different color models for neural networks

    Publication

    This paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...