Filters
total: 965
-
Catalog
Search results for: TELEMEDICINE, DEEP LEARNING, MULTIMEDIA DATABASES, BIG DATA
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublicationThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Journal of Big Data
Journals -
Machine-learning-based precise cost-efficient NO2 sensor calibration by means of time series matching and global data pre-processing
PublicationAir pollution remains a considerable contemporary challenge affecting life quality, the environment, and economic well-being. It encompasses an array of pollutants—gases, particulate matter, biological molecules—emanating from sources such as vehicle emissions, industrial activities, agriculture, and natural occurrences. Nitrogen dioxide (NO2), a harmful gas, is particularly abundant in densely populated urban areas. Given its...
-
Prediction of NOx Emission Based on Data of LHD On-Board Monitoring System in a Deep Underground Mine
Publication -
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Hanna Obracht-Prondzyńska dr inż. arch.
PeopleHanna Obracht-Prondzyńska, PhD MArch, Eng. Assistant Professor at the University of Gdańsk, Department of Spatial Management, academic teacher of urban design and spatial data analyses. Architect and urban planner experienced in data driven urban design and planning. She defended her PhD with distinction in engineering and technical sciences in the discipline of architecture and urban planning in 2020 at the Faculty of Architecture...
-
SELECTING A REPRESENTATIVE DATA SET OF THE REQUIRED SIZE USING THE AGENT-BASED POPULATION LEARNING ALGORITHM
Publication -
Predicting Compressive Strength of Cement-Stabilized Rammed Earth Based on SEM Images Using Computer Vision and Deep Learning
Publication -
Deep Learning-based Recalibration of the CUETO and EORTC Prediction Tools for Recurrence and Progression of Non–muscle-invasive Bladder Cancer
Publication -
High-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection
Publication -
NLITED - New Level of Integrated Techniques for Daylighting Education: Preliminary Data on the Use of an E-learning Platform
PublicationProject NLITED – New Level of Integrated Techniques for Daylighting Education - is an educational project for students and professionals. The project's objective is to create and develop an online eLearning platform with 32 eModules dedicated to daylight knowledge. The project also offers e-learners two summer school training where the theory is put into practice. The platform was launched on January 31, 2022. The paper...
-
Efkleidis Katsaros
PeopleEfklidis Katsaros received the B.Sc. degree in mathematics from the Aristotle University of Thessaloniki, Greece, in 2016, and the M.Sc. degree (cum laude) in data science: statistical science from Leiden University, The Netherlands, in 2019. He is currently pursuing the Ph.D. degree in deep video multi-task learning with the Department of Biomedical Engineering, Gdańsk University of Technology, Poland. Since 2020, he has been...
-
Personalized prediction of the secondary oocytes number after ovarian stimulation: A machine learning model based on clinical and genetic data
PublicationControlled ovarian stimulation is tailored to the patient based on clinical parameters but estimating the number of retrieved metaphase II (MII) oocytes is a challenge. Here, we have developed a model that takes advantage of the patient’s genetic and clinical characteristics simultaneously for predicting the stimulation outcome. Sequence variants in reproduction-related genes identified by next-generation sequencing were matched...
-
Weighted Ensemble with one-class Classification and Over-sampling and Instance selection (WECOI): An approach for learning from imbalanced data streams
Publication -
Piotr Odya dr inż.
PeoplePiotr Odya was born in Gdansk in 1974. He received his M.Sc. in 1999 from the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland. His thesis was related to the problem of sound quality improvement in the contemporary broadcasting studio. He is interested in video editing and multichannel sound systems. The goal of Mr. Odya Ph.D. thesis concerned methods and algorithms for correcting...
-
Statistical Data Pre-Processing and Time Series Incorporation for High-Efficacy Calibration of Low-Cost NO2 Sensor Using Machine Learning
PublicationAir pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given...
-
DUABI - Business Intelligence Architecture for Dual Perspective Analytics
PublicationA significant expansion of Big Data and NoSQL databases made it necessary to develop new architectures for Business Intelligence systems based on data organized in a non-relational way. There are many novel solutions combining Big Data technologies with Data Warehousing. However, the proposed solutions are often not sufficient enough to meet the increasing business demands, such as low data latency while still maintaining high...
-
Sensors and Sensor’s Fusion in Autonomous Vehicles
PublicationAutonomous vehicle navigation has been at the center of several major developments, both in civilian and defense applications. New technologies such as multisensory data fusion, big data processing, and deep learning are changing the quality of areas of applications, improving the sensors and systems used. New ideas such as 3D radar, 3D sonar, LiDAR, and others are based on autonomous vehicle revolutionary development. The Special...
-
Agnieszka Mikołajczyk-Bareła dr inż.
People -
Piotr Krajewski dr
PeoplePiotr Krajewski is a librarian at the Library of Gdańsk University of Technology (GUT) and a PhD student at the Medical University of Gdańsk. His research interests focus on the standardization of the e-resources usage data and Open Access publishing, especially the role of institutional repositories in the development of the OA initiative and the phenomenon of “predatory publishers”. He works at Scientific and Technical Information...
-
Sensors and System for Vehicle Navigation
PublicationIn recent years, vehicle navigation, in particular autonomous navigation, has been at the center of several major developments, both in civilian and defense applications. New technologies, such as multisensory data fusion, big data processing, or deep learning, are changing the quality of areas of applications, improving the sensors and systems used. Recently, the influence of artificial intelligence on sensor data processing and...
-
Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing
PublicationDeveloping signal processing methods to extract information automatically has potential in several applications, for example searching for multimedia based on its audio content, making context-aware mobile applications (e.g., tuning apps), or pre-processing for an automatic mixing system. However, the last-mentioned application needs a significant amount of research to reliably recognize real musical instruments in recordings....
-
IEEE International Conference on Big Data
Conferences -
Federated Learning in Healthcare Industry: Mammography Case Study
PublicationThe paper focuses on the role of federated learning in a healthcare environment. The experimental setup involved different healthcare providers, each with their datasets. A comparison was made between training a deep learning model using traditional methods, where all the data is stored in one place, and using federated learning, where the data is distributed among the workers. The experiment aimed to identify possible challenges...
-
Jan Franz dr hab.
People -
ACM International Workshop On Multimedia Databases
Conferences -
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublicationAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
PublicationTo successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...
-
Tomasz Deręgowski dr inż.
PeopleTomasz Deręgowski is Assistant Professor at the Department of Informatics in Management, Faculty of Management and Economics, Gdańsk University of Technology, Poland, and Head of Data Platform Engineering Department, working on Big Data, Machine Learning and Data Science solutions at Nordea Bank AB - the largest Scandinavian financial institution. He has more than 15 years of industrial experience, working as a programmer, team...
-
Assessing the attractiveness of human face based on machine learning
PublicationThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
Protokoły łączności do transmisji strumieni multimedialnych na platformie KASKADA
PublicationPlatforma KASKADA rozumiana jako system przetwarzania strumieni multimedialnych dostarcza szeregu usług wspomagających zapewnienie bezpieczeństwa publicznego oraz ocenę badań medycznych. Wydajność platformy KASKADA w znaczącym stopniu uzależniona jest od efektywności metod komunikacji, w tym wymiany danych multimedialnych, które stanowią podstawę przetwarzania. Celem prowadzonych prac było zaprojektowanie podsystemu komunikacji...
-
Superkomputer Tryton
LaboratoriesObliczenia dużej skali, Wirtualna infrastruktura w chmurze (IaaS), Analiza danych (big data)
-
Data governance: Organizing data for trustworthy Artificial Intelligence
PublicationThe rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements....
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublicationIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
International Conference on Internet of Things, Big Data and Security
Conferences -
Web and Big Data (Asia Pacific Web Conference)
Conferences -
Muhammad Usman PhD
PeopleMuhammad Usman is currently a Computer Vision Researcher at Gdansk University of Technology, working on the BE-LIGHT project, where his research focuses on advancing biomedical diagnostics through the integration of light-based technologies and machine learning techniques. He has completed his Master’s degree in Control Science and Engineering from the University of Science and Technology of China (USTC), Hefei, China. His research...
-
Model-free and Model-based Reinforcement Learning, the Intersection of Learning and Planning
PublicationMy doctoral dissertation is intended as the compound of four publications considering: structure and randomness in planning and reinforcement learning, continuous control with ensemble deep deterministic policy gradients, toddler-inspired active representation learning, and large-scale deep reinforcement learning costs.
-
Optymalizacja zasobów chmury obliczeniowej z wykorzystaniem inteligentnych agentów w zdalnym nauczaniu
PublicationRozprawa dotyczy optymalizacji zasobów chmury obliczeniowej, w której zastosowano inteligentne agenty w zdalnym nauczaniu. Zagadnienie jest istotne w edukacji, gdzie wykorzystuje się nowoczesne technologie, takie jak Internet Rzeczy, rozszerzoną i wirtualną rzeczywistość oraz deep learning w środowisku chmury obliczeniowej. Zagadnienie jest istotne również w sytuacji, gdy pandemia wymusza stosowanie zdalnego nauczania na dużą skalę...
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublicationThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
Experience-Oriented Knowledge Management for Internet of Things
PublicationIn this paper, we propose a novel approach for knowledge management in Internet of Things. By utilizing Decisional DNA and deep learning technologies, our approach enables Internet of Things of experiential knowledge discovery, representation, reuse, and sharing among each other. Rather than using traditional machine learning and knowledge discovery methods, this approach focuses on capturing domain’s decisional events via Decisional...
-
An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
PublicationIn this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...
-
Book Review
PublicationActing over the last three decades as an Editor and Associate Editor for a number of international journals in the general area of cybernetics and AI, as well as a Chair and Co-Chair of numerous conferences in this field, I have had the exciting opportunity to closely witness and to be actively engaged in the stimulating research area of machine learning and its important augmentation with deep learning techniques and technologies. From...
-
Acquisition and indexing of RGB-D recordings for facial expressions and emotion recognition
PublicationIn this paper KinectRecorder comprehensive tool is described which provides for convenient and fast acquisition, indexing and storing of RGB-D video streams from Microsoft Kinect sensor. The application is especially useful as a supporting tool for creation of fully indexed databases of facial expressions and emotions that can be further used for learning and testing of emotion recognition algorithms for affect-aware applications....
-
Spotkanie politechnicznego klubu sztucznej inteligencji
EventsPierwsze w tym roku akademickim spotkanie klubu AI Bay – Zatoka Sztucznej Inteligencji, który działa na Politechnice Gdańskiej odbędzie się w Gmachu B Wydziału Elektroniki, Telekomunikacji i Informatyki (Audytorium 1P).
-
Grzegorz Szwoch dr hab. inż.
PeopleGrzegorz Szwoch was born in 1972 in Gdansk. In 1991-1996 he studied at the Technical University of Gdansk. In 1996 he graduated as a student from the Sound Engineering Department. His thesis was related to physical modeling of musical instruments. Since that time he has been a member of the research staff at the Multimedia Systems Department as a PhD student (1996-2001), Assistant (2001-2004), Assistant professor (2004-2020) and...
-
Multimedia i interfejsy 2024
e-Learning Courses{mlang pl} Celem kursu jest zapoznanie studentów z: rodzajami danych multimedialnych oraz metodami ich pozyskiwania formatami i standardami danych multimedialnych metodami kompresji danych multimedialnych podstawami przetwarzania danych multimedialnych oraz ich rozpoznawania programowaniem aplikacji multimedialnych, w tym gier wideo rodzajami interfejsów użytkownika w systemach komputerowych metodami opisu oraz zasadami tworzenia...
-
Analysis-by-synthesis paradigm evolved into a new concept
PublicationThis work aims at showing how the well-known analysis-by-synthesis paradigm has recently been evolved into a new concept. However, in contrast to the original idea stating that the created sound should not fail to pass the foolproof synthesis test, the recent development is a consequence of the need to create new data. Deep learning models are greedy algorithms requiring a vast amount of data that, in addition, should be correctly...
-
IEEE/ACM International Conference on Big Data Computing, Applications and Technologies
Conferences