Search results for: antenna array, dual-polarization, microstrip antenna, 5g, mu-mimo, superposition
-
Reduced-Cost Constrained Modeling of Microwave and Antenna Components: Recent Advances
PublicationElectromagnetic (EM) simulation models are ubiquitous in the design of microwave and antenna components. EM analysis is reliable but CPU intensive. In particular, multiple simulations entailed by parametric optimization or uncertainty quantification may considerably slow down the design processes. In order to address this problem, it is possible to employ fast metamodels. Here, the popular solution approaches are approximation...
-
Topological modifications for performance improvement and size reduction of wideband antenna structures
PublicationCompact antennas belong to the key components of modern communication systems. Their miniaturization is often achieved by introducing appropriate topological changes such as simple ground plane slots or tapered feeds. More sophisticated modifications are rarely considered in the literature because they normally lead to significant increase of the number of tunable parameters, which makes the antenna design process more challenging....
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
Design of a Wideband High-Gain Monopulse Antenna for X- and Ku-Bands Applications
PublicationThe present study provides a wideband high-gain monopulse antenna based on a dielectric lens operating in X- and Ku-bands, in which a wideband dielectric lens is designed and employed to fulfill the radiation pattern and bandwidth necessities of a monopulse antenna. The proposed configuration has four horns allowing for the simultaneous creation of 1 and 6 designs in two perpendicular planes. The main advantages of the proposed...
-
Pareto Ranking Bisection Algorithm for Expedited Multi-Objective Optimization of Antenna Structures
PublicationThe purpose of this letter is introduction of a novel methodology for expedited multi-objective design of antenna structures. The key component of the presented approach is fast identification of the initial representation of the Pareto front (i.e., a set of design representing the best possible trade-offs between conflicting objectives) using a Pareto-ranking bisection algorithm. The algorithm finds a discrete set of Pareto-optimal...
-
Auto-Correction of Non-Anechoic Antenna Measurements Based on Multi-Taper Approach
PublicationMeasurements of antenna prototypes are normally performed in dedicated, yet costly environments such as anechoic chambers (ACs). However, the AC construction cost might be unjustified when the measurements aim to support education, or budget-tight research. Alternatively, experiments can be realized in non-anechoic regime and refined using appropriate methods. In this letter, a framework for correction of antenna far-field measurements...
-
Rapid Multi-band Patch Antenna Yield Estimation Using Polynomial Chaos-Kriging
PublicationYield estimation of antenna systems is important to check their robustness with respect to the uncertain sources. Since the Monte Carlo sampling-based real physics simulation model evaluations are computationally intensive, this work proposes the polynomial chaos-Kriging (PC-Kriging) metamodeling technique for fast yield estimation. PC-Kriging integrates the polynomial chaos expansion (PCE) as the trend function of Kriging metamodel...
-
Dimensionality-Reduced Antenna Modeling with Stochastically Established Constrained Domain
PublicationOver the recent years, surrogate modeling methods have become increasingly widespread in the design of contemporary antenna systems. On the one hand, it is associated with a growing awareness of numerical optimization, instrumental in achieving high-performance structures. On the other hand, considerable computational expenses incurred by massive full-wave electromagnetic (EM) analyses, routinely employed as a major design tool,...
-
Generalized Pareto ranking bisection for computationally feasible multi-objective antenna optimization
PublicationMulti-objective optimization (MO) allows for obtaining comprehensive information about possible design trade-offs of a given antenna structure. Yet, executing MO using the most popular class of techniques, population-based metaheuristics, may be computationally prohibitive when full-wave EM analysis is utilized for antenna evaluation. In this work, a low-cost and fully deterministic MO methodology is introduced. The proposed generalized...
-
Fast multi-objective optimization of antenna structures by means of data-driven surrogates and dimensionality reduction
PublicationDesign of contemporary antenna structures needs to account for several and often conflicting objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective formulations are most often employed, through either a priori preference articulation, objective aggregation,...
-
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublicationData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
-
Multi-Taper-Based Automatic Correction of Non-Anechoic Antenna Measurements
PublicationPrototype measurements belong to the key steps in the development of antenna structures. Although accurate validation of their far-field performance can be realized in dedicated facilities, such as anechoic chambers, the high cost of their construction and maintenance might not be justified if the main goal of measurements is to support teaching or low-budget research. Instead, they can be performed in non-anechoic conditions and...
-
Excitation of Circularly Polarized Wave via Single-Feed Metasurface-Integrated Compact Antenna for Internet of Things
PublicationA compact circularly polarized (CP) quasi-omnidirectional antenna is introduced for internet of things (IoT). The structure consists of two components implemented on FR-4 substrates, and sep-arated by an air gap: one printed with a rectangular patch fed through a matching network, and another with a metasurface and a ground plane. Two different methods for impedance matching are employed. An equivalent circuit model of the antenna...
-
RSS-Based DoA Estimation Using ESPAR Antenna Radiation Patterns Spline Interpolation
PublicationIn this paper, it is shown how power pattern crosscorrelation (PPCC) algorithm, which relies on received signal strength (RSS) values recorded at electronically steerable parasitic array radiator (ESPAR) antenna output port, used for direction-of-arrival (DoA) estimation, can easily be improved by applying spline interpolation to radiation patterns recorded in the calibration phase of the DoA estimation process. The proposed method...
-
Expedited EM-driven multi-objective antenna design in highly-dimensional parameter spaces
PublicationA technique for low-cost multi-objective optimization of antennas in highly-dimensional parameter spaces is presented. The optimization procedure is expedited by exploiting fast surrogate models, including coarse-discretization EM antenna simulations and response surface approximations (RSA). The latter is utilized to yield an initial set of Pareto non-dominated designs which are further refined using response correction methods....
-
Rapid Variable-Resolution Parameter Tuning of Antenna Structures Using Frequency-Based Regularization and Sparse Sensitivity Updates
PublicationGeometry parameter tuning is an inherent part of antenna design process. While most often performed in a local sense, it still entails considerable computational expenses when carried out at the level of full-wave electromagnetic (EM) simulation models. Moreover, the optimization outcome may be impaired if good initial design is not available. This paper proposes a novel approach to fast and improved-reliability gradient-based...
-
Quasi-Global Optimization of Antenna Structures Using Principal Components and Affine Subspace-Spanned Surrogates
PublicationParametric optimization is a mandatory step in the design of contemporary antenna structures. Conceptual development can only provide rough initial designs that have to be further tuned, often extensively. Given the topological complexity of modern antennas, the design closure necessarily involves full-wave electromagnetic (EM) simulations and—in many cases—global search procedures. Both factors make antenna optimization a computationally...
-
Ultra-Miniaturized HMSIW Cavity-Backed Reconfigurable Antenna Diplexer Employing Dielectric Fluids with Wide Frequency Tuning Range
PublicationThis communication presents an ultra-miniaturized two-way frequency tunable antenna diplexer based on cavity-backed slots and dielectric fluids. The proposed antenna utilizes two half-mode substrate-integrated rectangular cavities loaded with slots and fluidic pockets. The conventional size reduction is achieved by employing half-mode cavities, whereas ultra-miniaturization is obtained by applying the slots, which provides additional...
-
Frequency-Reconfigurable Hybrid SIW-Based Self-Diplexing Antenna Using Solid and Liquid Dielectric Loading
PublicationThis paper presents a novel frequencyreconfigurable self-diplexing antenna (SDA) utilizing a hybrid substrate-integrated waveguide (SIW). The antenna comprises a radiating slot, a feeding network, and a hybrid SIW cavity featuring half-mode circular and half-mode rectangular SIW structures. The unique feature of this antenna lies in its fine-tuning capability of each resonant frequency by inserting or injecting solid and liquid...
-
Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna
PublicationPurpose–The purpose of this paper is to validate methodologies for expedited multi-objective designoptimization of complex antenna structures both numerically and experimentally.Design/methodology/approach–The task of identifying the best possible trade-offs between theantenna size and its electrical performance is formulated as multi-objective optimization problem.Algorithmic frameworks are described for finding Pareto-optimal...
-
Multi-objective antenna design by means of sequential domain patching
PublicationA simple yet robust methodology for rapid multiobjective design optimization of antenna structures has been presented. The key component of our approach is sequential domain patching of the design space which is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs, obtained by means of single-objective optimization runs. The patching process yields the initial approximation of the...
-
On Accelerated Metaheuristic-Based Electromagnetic-Driven Design Optimization of Antenna Structures Using Response Features
PublicationDevelopment of present-day antenna systems is an intricate and multi-step process requiring, among others, meticulous tuning of designable (mainly geometry) parameters. Concerning the latter, the most reliable approach is rigorous numerical optimization, which tends to be re-source-intensive in terms of computing due to involving full-wave electromagnetic (EM) simu-lations. The cost-related issues are particularly pronounced whenever...
-
Low-Cost and Precise Automated Re-Design of Antenna Structures Using Interleaved Geometry Scaling and Gradient-Based Optimization
PublicationDesign of contemporary antennas is an intricate endeavor involving multiple stages, among others, tuning of geometry parameters. In particular, re-designing antennas to different operating frequencies, makes parametric optimization imperative to ensure the best achievable system performance. If the center frequency at the current design is distant from the target one, local tuning methods generally fail, whereas global algorithms...
-
A system for Direction-Of-Arrival estimation in ISM 2.4 GHz frequency band based on ESPAR antenna and SDR technology
PublicationDetermination of the direction of the signal arrival (DOA) finds many applications in various areas of science and industry. Knowledge of DOA is used, among others to determine the position of a satellite with a low Earth orbit (LEO), localization of people and things as well as in research of wireless communication systems, for instance the determination of the number of...
-
Simulation-Driven Antenna Modeling by Means of Response Features and Confined Domains of Reduced Dimensionality
PublicationIn recent years, the employment of full-wave electromagnetic (EM) simulation tools has become imperative in the antenna design mainly for reliability reasons. While the CPU cost of a single simulation is rarely an issue, the computational overhead associated with EM-driven tasks that require massive EM analyses may become a serious bottleneck. A widely used approach to lessen this cost is the employment of surrogate models, especially...
-
Efficient Simulation-Based Global Antenna Optimization Using Characteristic Point Method and Nature-Inspired Metaheuristics
PublicationAntenna structures are designed nowadays to fulfil rigorous demands, including multi-band operation, where the center frequencies need to be precisely allocated at the assumed targets while improving other features, such as impedance matching. Achieving this requires simultaneous optimization of antenna geometry parameters. When considering multimodal problems or if a reasonable initial design is not at hand, one needs to rely...
-
High gain/bandwidth off‑chip antenna loaded with metamaterial unit‑cell impedance matching circuit for sub‑terahertz near‑field electronic systems
PublicationAn innovative off-chip antenna (OCA) is presented that exhibits high gain and efficiency performance at the terahertz (THz) band and has a wide operational bandwidth. The proposed OCA is implemented on stacked silicon layers and consists of an open circuit meandering line. It is shown that by loading the antenna with an array of subwavelength circular dielectric slots and terminating it with a metamaterial unit cell, its impedance...
-
Rapid Multi-Criterial Antenna Optimization by Means of Pareto Front Triangulation and Interpolative Design Predictors
PublicationModern antenna systems are designed to meet stringent performance requirements pertinent to both their electrical and field properties. The objectives typically stay in conflict with each other. As the simultaneous improvement of all performance parameters is rarely possible, compromise solutions have to be sought. The most comprehensive information about available design trade-offs can be obtained through multi-objective optimization...
-
Cost-Efficient Bi-Layer Modeling of Antenna Input Characteristics Using Gradient Kriging Surrogates
PublicationOver the recent years, surrogate modeling has been playing an increasing role in the design of antenna structures. The main incentive is to mitigate the issues related to high cost of electromagnetic (EM)-based procedures. Among the various techniques, approximation surrogates are the most popular ones due to their flexibility and easy access. Notwithstanding, data-driven modeling of antenna characteristics is associated with serious...
-
Rapid multi-objective antenna design using point-by-point Pareto set identification and local surrogate models
PublicationAntenna design is inherently a multicriterial problem.Determination of the best possible tradeoffs between conflicting objectives (a so-called Pareto front), such as reflection response, gain, and antenna size, is indispensable from the designer’s point of view, yet challenging when high-fidelity electromagnetic (EM) simulations are utilized for performance evaluation. Here, a novel and computationally...
-
Low-Cost Open-Hardware System for Measurements of Antenna Far-Field Characteristics in Non-Anechoic Environments
PublicationExperimental validation belongs to the most important steps in the development of antenna structures. Measurements are normally performed in expensive, dedicated facilities such as anechoic chambers, or open-test sites. A high cost of their construction might not be justified when the main goal of antenna verification boils down to demonstration of the measurement procedure, or rough validation of the simulation models used for...
-
Shielded HMSIW-Based Self-Triplexing Antenna With High Isolation for WiFi/WLAN/ISM Band
PublicationThis article presents a novel design of a miniaturized self-triplexing antenna (STA) based on the shielded half-mode substrate integrated waveguide (S-HMSIW) for WiFi/WLAN/ISM-band applications. The S-HMSIW is constructed by assembling one row of vias and an open slot at the open-ended side of the conventional HMSIW. This configuration increases the quality factor and minimizes unwanted radiation loss, which allows for achieving...
-
Low-Cost and Highly-Accurate Behavioral Modeling of Antenna Structures by Means of Knowledge-Based Domain-Constrained Deep Learning Surrogates
PublicationThe awareness and practical benefits of behavioral modeling methods have been steadily growing in the antenna engineering community over the last decade or so. Undoubtedly, the most important advantage thereof is a possibility of a dramatic reduction of computational expenses associated with computer-aided design procedures, especially those relying on full-wave electromagnetic (EM) simulations. In particular, the employment of...
-
TR-Based Antenna Design with Forward FD: The Effects of Step Size on the Optimization Performance
PublicationNumerical methods are important tools for design of modern antennas. Trust-region (TR) methods coupled with data-efficient surrogates based on finite differentiation (FD) represent a popular class of antenna design algorithms. However, TR performance is subject to FD setup, which is normally determined a priori based on rules-of-thumb. In this work, the effect of FD perturbations on the performance of TR-based design is evaluated...
-
Design and Characterization of a Planar Structure Wideband Millimeter-Wave Antenna with Wide Beamwidth for Wearable off-body Communication Applications
PublicationThis letter presents the design of a planar single-layer wideband antenna featuring wide beamwidth has well as high and stable in-band gain. The proposed antenna is a planar monopole fed by a bottom-grounded coplanar waveguide to realize wide beamwidth in both the xz- and yz-planes. Simultaneous optimization of all adjustable antenna parameters, carried out at the full-wave electromagnetic simulation level. The constructive interference...
-
Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics
PublicationDesign of antennas for the Internet of Things (IoT) applications requires taking into account several performance figures, both electrical (e.g., impedance matching) and field (gain, radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of stringent specifications necessitates the development of topologically complex structures described by a large number of geometry parameters that...
-
A Wideband Corrugated Ridged Horn Antenna with Enhanced Gain and Stable Phase Center for X- and Ku-Band Applications
PublicationIn this letter, a structure and design procedure of a novel double-flared conical horn antenna with an improved gain and a stable phase center is presented. The antenna incorporates a hybrid ridged and corrugated structure. A double-ridged section is responsible for ensuring a wideband operation, whereas the corrugated section supports the hybrid mode. The antenna impedance bandwidth (VSWR < 2) is 6 GHz to 20 GHz. Excellent performance...
-
Microfluidically Frequency-Reconfigurable Self-Quadruplexing Antenna Based on Substrate Integrated Square-Cavity
PublicationIn this article, a novel concept of self-quadruplexing tunable antenna (SQTA) enabled by microfluidic channels is investigated. The operating channels are either filled with air or dielectric liquids to enable frequency tunability. The proposed SQTA is implemented on the substrate-integrated square-cavity (SISC). A swastika-shaped slot is milled on the top-surface of the SISC to create four quarter-mode resonators. The resonators...
-
Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging
PublicationUtilization of fast surrogate models has become a viable alternative to direct handling of fullwave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques...
-
Three-objective antenna optimization by means of kriging surrogates and domain segmentation
PublicationIn this paper, an optimization framework for multi-objective design of antenna structures is discussed which exploits data-driven surrogates, a multi-objective evolutionary algorithm, response correction techniques for design refinement, as well as generalized domain segmentation. The last mechanism is introduced to constrain the design space region subjected to sampling, which permits reduction of the number of training data samples...
-
Shielded HMSIW-based frequency-tunable self-quadruplexing antenna using different solid/liquid dielectrics
PublicationThis article proposes a frequency-tunable self-quadruplexing antenna based on a shielded half-mode substrate integrated waveguide (S-HMSIW). In order to reduce the size of the HMSIW cavity resonator and to obtain quad-band characteristics, a modied E-shaped slot is engraved on the top of the metal. The experimental validation is carried out after analyzing the data using a circuit model. Flexibility of each resonant frequency is...
-
Multitaper-Based Post-processing of Compact Antenna Responses Obtained in Non-anechoic Conditions
PublicationThe process of developing antenna structures typically involves prototype measurements. While accurate validation of far-field performance can be performed in dedicated facilities like anechoic chambers, high cost of construction and maintenance might not justify their use for teaching, or low-budget research scenarios. Non-anechoic experiments provide a cost-effective alternative, however the performance metrics obtained in such...
-
Broadband Sonar with a Cylindrical Antenna
PublicationSkutkiem wzrostu szerokości widma sygnałów w sonarach z płaskimi antenami jest wzrost szerokości odchylanych wiązek, jeżeli beamformer dokonuje kompensacji faz tylko na częstotliwości środkowej widma. W artykule przedstawiono wyniki obliczeń, które odpowiadają na pytanie, czy podobny efekt występuje w szerokopasmowych sonarach z anteną cylindryczną. Obliczenia przeprowadzono dla anten nadawczych o szerokich wiązkach i anten odbiorczych...
-
Improved-Efficacy EM-Driven Optimization of Antenna Structures Using Adaptive Design Specifications and Variable-Resolution Models
PublicationOptimization-driven parameter tuning is an essential step in the design of antenna systems. Although in many cases it is still conducted through parametric studies, rigorous numerical methods become a necessity if truly optimum designs are sought for, and the problem intricacies (number of variables, multiple goals, constraints) make the interactive approaches insufficient. The two practical considerations of electromagnetic (EM)-driven...
-
Fast Multi-Objective Antenna Optimization Using Sequential Patching and Variable-Fidelity EM Models
PublicationIn this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained...
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublicationMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
Expedited Feature-Based Quasi-Global Optimization of Multi-Band Antenna Input Characteristics with Jacobian Variability Tracking
PublicationDesign of modern antennas relies—for reliability reasons—on full-wave electromagnetic simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field performance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives, make numerical optimization of antenna geometry parameters a highly recommended design procedure. Conventional algorithms, particularly...
-
Fast Calibration-Free Single-Anchor Indoor Localization Based on Limited Number of ESPAR Antenna Radiation Patterns
Publication— In this article, we investigate how the calibrationfree single-anchor indoor localization algorithm developed for base stations equipped with electronically steerable parasitic array radiator (ESPAR) antennas can further be improved. By reducing the total number of ESPAR antenna radiation patterns used in localization process, one can significantly reduce the time needed for an object localization. Performed localization measurements...
-
Design and optimization of a novel compact broadband linearly/circularly polarized wide-slot antenna for WLAN and Wi-MAX applications
PublicationA novel topologically modified structure of a compact low profile wide-slot antenna for broadband applications is presented. The antenna comprises a modified E-shaped slot with unequal arm lengths in the ground plane, and a parasitic quasi-rectangular loop placed coplanar with the feedline. For exciting orthogonal modes with equal amplitude, a single-point feeding technique with an asymmetrical geometry of the coplanar waveguide...
-
Improved-Efficacy EM-Based Antenna Miniaturization by Multi-Fidelity Simulations and Objective Function Adaptation
PublicationThe growing demands for integration of surface mount design (SMD) antennas into miniatur-ized electronic devices have been continuously imposing limitations on the structure dimen-sions. Examples include embedded antennas in applications such as on-board devices, picosatel-lites, 5G communications, or implantable and wearable devices. The demands for size reduction while ensuring a satisfactory level of the electrical and field...