Filters
total: 479
Search results for: antenna modeling
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublicationIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Fast Re-Design of Multi-Band Antennas by Means of Orthogonal-Direction Geometry Scaling and Local Parameter Tuning
PublicationApplication-driven design of antenna systems fosters a reuse of structures that have proven competitive in terms of their electrical and field performance, yet have to be re-designed for a new application area. In practice, it most often entails relocation of the operating frequencies or bandwidths, which is an intricate endeavor, normally requiring utilization of numerical optimization techniques. If the center frequencies of...
-
Design of a Coplanar Waveguide-Fed Wideband Compact-Size Circularly Polarized Antenna and polarization-sense alteration
PublicationThis paper presents the design and validation of a geometrically simple circularly polarized(CP) structure featuring flat gain in the sub-6 GHz 5th generation spectrum. The proposed structure is based on coplanar-waveguide-fed, modified wide slot etched in the ground plane. For generating CP waves, the coplanar ground planes are designed with slight asymmetry in both the horizontal and vertical directions. Furthermore, the ground...
-
Measurements of Path Loss in Off-Body Channels in Indoor Environments
PublicationThe main goal of the paper is to investigate the influence of body orientation and on-body antenna placement on the path loss in off-body communications. In addition, the influence of different bodies is analysed.
-
Kriging metamodels and design re‐utilization for fast parameter tuning of antenna structures
PublicationThe paper addresses the problem of computationally efficient electromagnetic (EM)‐driven design closure of antenna structures. The foundations of the presented approach are fast kriging interpolation metamodels, utilized for two purposes: (a) producing a good starting point for further parameter tuning, and (b) yielding a reasonable Jacobian matrix estimate to jump‐start the optimization procedure. The models are rendered using...
-
On Decomposition-Based Surrogate-Assisted Optimization of Leaky Wave Antenna Input Characteristics for Beam Scanning Applications
PublicationRecent years have witnessed a growing interest in reconfigurable antenna systems. Travelling wave antennas (TWAs) and leaky wave antennas (LWAs) are representative examples of structures featuring a great level of flexibility (e.g., straightforward implementation of beam scanning), relatively simple geometrical structure, low profile, and low fabrication cost. Notwithstanding, the design process of TWAs/LWAs is a challenging endeavor...
-
EM-Driven Multi-Objective Optimization of a Generic Monopole Antenna by Means of a Nested Trust-Region Algorithm
PublicationAntenna structures for modern applications are characterized by complex and unintuitive topologies that are difficult to develop when conventional experience-driven techniques are of use. In this work, a method for automatic generation of antenna geometries in a multi-objective setup has been proposed. The approach involves optimization of a generic spline-based radiator with adjustable number of parameters using a nested trust-region-based...
-
Path Loss Analysis in Off-Body Channels in Indoor Environment
PublicationThis temporary document describes an analysis of path loss in off-body channels in an indoor environment. The influence of body orientation and on-body antenna placement on path loss in off-body communications as well as of different bodies has been investigated. Five static scenarios, six distances between body and antenna and eight body orientations were analysed; moreover, two dynamic scenarios were investigated. The smallest...
-
An Optimized Ka-Band Low Profile Dual-Polarized Transmitarray Antenna With 2D Beam Switching
PublicationThis article presents an optimized dual-polarized transmitarray antenna (TA) designed for MIMO applications at the Ka-band, capable of switching beams in two directions. The antenna aperture uses a small unit cell with three layers of Taconic RF-35 dielectric substrates, which can be easily fabricated using PCB technology. The unit cell achieved a 360-degree phase shift and a transmission magnitude exceeding –0.4 dB at 28 GHz....
-
Design and experimental verification of multi-layer waveguide using pin/hole structure
PublicationThis study presents a novel technique for minimizing RF leakage in metallic hollow waveguides fabricated using the multilayer split-block method. By integrating a pin/hole wall into the split-block multilayers, a substantial reduction of RF leakage can be achieved while reducing the circuit size and mitigating the performance variations. To validate the proposed approach, a slot antenna fed by single ridge waveguide has been prototyped...
-
Highly-Miniaturized Self-Quadruplexing Antenna Based on Substrate-Integrated Rectangular Cavity
PublicationThis paper introduces a novel self-quadruplexing antenna (SQA) architecture using a substrate-integrated rectangular cavity (SIRC) for compact size, wide-frequency re-designability, and high isolation responses. The proposed SQA is developed by engraving two U-shaped slots (USSs) on the top conductor of the SIRC. The USSs are excited by employing four microstrip feedlines to achieve self-quadruplexing antenna characteristics. The...
-
Low-cost multi-objective optimization of antennas using Pareto front exploration and response features
PublicationIn the paper, a procedure for low-cost multi-objective optimization of antenna structures is presented. Our approach is based on exploration of the Pareto front representing the best possible trade-offs between conflicting objectives, here, the structure size and its electrical performance. Starting from the design representing the best in-band reflection level, subsequent Pareto-optimal designs are identified through local constrained...
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublicationA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
System Loss in UWB Off-Body Communications in a Ferry Environment
PublicationIn this paper, the system loss in UWB off-body communications in a ferry environment based on measurements is presented. A mobile measurement set-up, consisting of WBAN nodes with UWB DWM1000 modules, was used. System loss was split into LOS and NLOS conditions. For the former, the smallest mean value, 24.4 dB, was obtained for the user approaching the fixed terminal, with the antenna on his chest, and the largest, 28.1 dB, for...
-
Filtering EBG Structures Implemented in Coplanar Waveguide Feedline of Planar Slot Antenna
PublicationA novel compact dual-band slot antenna fed by a coplanar waveguide (CPW) incorporating electromagnetic band gap (EBG) structures has been proposed. At first, a classic wideband slot antenna fed by a CPW, dedicated to work in 2 ÷ 18 GHz band, has been designed. Subsequently, by adding simple EBG filtering structures into a CPW feedline, a dual-band performance ranging from 2.5 to 5.3 GHz and from 13.5 to 16.3 GHz, with the voltage...
-
Improved RSS-Based DoA Estimation Accuracy in Low-Profile ESPAR Antenna Using SVM Approach
PublicationIn this paper, we have shown how the overall performance of direction-of-arrival (DoA) estimation using lowprofile electronically steerable parasitic array radiator (ESPAR) antenna, which has been proposed for Internet of Things (IoT) applications, can significantly be improved when support vector machine (SVM) approach is applied. Because the SVM-based DoA estimation method used herein relies solely...
-
Improved jamming resistance using electronically steerable parasitic antenna radiator
PublicationThis paper presents an idea of using an Electronically Steerable Parasitic Antenna Radiator (ESPAR) for jamming suppression in IEEE 802.11b networks. Jamming (intentional interference) attacks are known to be effective and easy to perform, which may impose connectivity problems in applications concerning Internet of Things (IoT). In our paper, theoretical considerations are presented and the results of experiments performed in...
-
Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging
PublicationDesign of modern antenna structures heavily depends on electromagnetic (EM) simulation tools. EM analysis provides reliable evaluation of increasingly complex designs but tends to be CPU intensive. When multiple simulations are needed (e.g., for parameters tuning), the aggregated simulation cost may become a serious bottleneck. As one possible way of mitigating the issue, the recent literature fosters utilization of faster representations,...
-
Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis
PublicationOptimization-based parameter tuning has become an inherent part of contemporary antenna design process. For the sake of reliability, it is typically conducted at the level of full-wave electromagnetic (EM) simulation models. This may incur considerable computational expenses depending on the cost of an individual EM analysis, the number of adjustable variables, the type of task (local, global, single-/multi-objective optimization),...
-
Numerically Efficient Miniaturization-Oriented Optimization of an Ultra-Wideband Spline-Parameterized Antenna
PublicationDesign of ultra-wideband radiators for modern handheld applications is a challenging task that involves not only selection of an appropriate topology, but also its tuning oriented towards balancing the electrical performance and size. In this work, a low-cost design of a compact, broadband, spline-parameterized monopole antenna has been considered. The framework used for the structure design implements trust-region-based methods,...
-
An Innovative Antenna Array with High Inter Element Isolation for Sub-6 GHz 5G MIMO Communication Systems
PublicationA novel technique is shown to improve the isolation between radiators in antenna arrays. The proposed technique suppresses the surface-wave propagation and reduces substrate loss thereby enhancing the overall performance of the array. This is achieved without affecting the antenna’s footprint. The proposed approach is demonstrated on a four-element array for 5G MIMO applications. Each radiating element in the array is constituted...
-
Ultra-Compact SIRC-Based Self-Triplexing Antenna with High Isolation
PublicationAn ultra-compact self-triplexing antenna realized on a substrate-integrated rectangular cavity (SIRC) is discussed in this study. The proposed structure employs two L-shaped slots and an in-verted U-shaped slot to radiate at three independent operating frequency bands. Three 50-ohm microstrip feed lines are used to excite the radiation in these slots. The operating frequency is individually tuned using the slot size. The slot placement...
-
On the Usefulness of the Generalised Additive Model for Mean Path Loss Estimation in Body Area Networks
PublicationIn this article, the usefulness of the Generalised Additive Model for mean path loss estimation in Body Area Networks is investigated. The research concerns a narrow-band indoor off-body network operating at 2.45 GHz, being based on measurements performed with four different users. The mean path loss is modelled as a sum of four components that depend on path length, antenna orientation angle, absolute difference between transmitting...
-
Design space reduction and variable-fidelity EM simulations for feasible Pareto optimization of antennas
PublicationA computationally efficient procedure for multi-objective optimization of antenna structures is presented. In our approach, a response surface approximation (RSA) model created from sampled coarse-discretization EM antenna simulations is utilized to yield an initial set of Pareto-optimal designs using a multi-objective evolutionary algorithm. The final Pareto front representation for the high-fidelity model is obtained using surrogate-based...
-
Fast Multi-Objective Antenna Optimization Using Sequential Patching and Variable-Fidelity EM Models
PublicationIn this work, a technique for fast multi-objective design optimization of antenna structures is presented. In our approach, the initial approximation of the Pareto set representing the best possible trade-offs between conflicting design objectives is obtained by means of sequential patching of the design space. The latter is a stencil-based search that aims at creating a path that connects the extreme Pareto-optimal designs (obtained...
-
Low-Cost 3-D Printed Lens Antenna for Ka-Band Connectivity Applications
PublicationThis paper discusses the use of low-cost 3-D printing technology to fabricate dielectric lenses for Ka-band wireless networks. A low-cost FDM alternative to previously presented 3-D printed lens in SLA technology with high performance resin is presented. The presented approach has been demonstrated for a 39 GHz MU-MIMO antenna array modified to realize multibeam or switched-beam antenna that can support demanding energy-efficient...
-
Design and Optimization of a Compact Planar Radiator for UWB Applications and Beyond
PublicationA compact monopole antenna for ultra-wideband (UWB) and beyond applications has been proposed. The radiator is based on the monopole topology. The super-wideband behavior has been achieved using a combination of spline-based modifications applied to the driven element, as well as utilization of a tapered feed and a slot-modified ground plane. The electrical performance of the structure has been tuned using a numerical optimization...
-
Adaptive Wavelet-Based Correction of Non-Anechoic Antenna Measurements
PublicationNon-anechoic measurements represent an affordable alternative to evaluation of antenna performance in expensive, dedicated facilities. Due to interferences and noise from external sources of EM radiation, far-field results obtained in non-ideal conditions require additional post-processing. Conventional correction algorithms rely on manual tuning of parameters, which make them unsuitable for reliable testing of prototypes. In this...
-
Cost-Efficient EM-Driven Size Reduction of Antenna Structures by Multi-Fidelity Simulation Models
PublicationDesign of antenna systems for emerging application areas such as the Internet of Things (IoT), fifth generation wireless communications (5G), or remote sensing, is a challenging endeavor. In addition to meeting stringent performance specifications concerning electrical and field properties, the structure has to maintain small physical dimensions. The latter normally requires searching for trade-off solutions because miniaturization...
-
Simple Superstrate Antenna for Connectivity Improvement in Precision Farming Applications
PublicationIn this paper, a concept of a simple circularly polarized antenna with partially reflecting surface (PRS) has been adopted for precision farming applications. The investigation contains an analysis of the dependence of the antenna performance on the elements number in the PRS structure in X- and Ka-band frequencies. Especially meaningful parameters from point-to-point connectivity perspective are...
-
Rapid Re-Design and Bandwidth/Size Trade-Offs for Compact Wideband Circular Polarization Antennas Using Inverse Surrogates and Fast EM-Based Parameter Tuning
PublicationDesign of compact wideband circularly polarized (CP) antennas is challenging due to the necessity of simultaneous handling of several characteristics (reflection, axial ratio, gain) while maintaining a small size of the structure. Antenna re-design for various operating bands is clearly more difficult yet practically important because intentional reduction of the bandwidth (e.g., by moving the lower edge of the operating band up...
-
Reduced-cost electromagnetic-driven optimisation of antenna structures by means of trust-region gradient-search with sparse Jacobian updates
PublicationNumerical optimisation plays more and more important role in the antenna design. Because of lack of design-ready theoretical models, electromagnetic (EM)-simulation-driven adjustment of geometry parameters is a necessary step of the design process. At the same time, traditional parameter sweeping cannot handle complex topologies and large number of design variables. On the other hand, high computational cost of the conventional...
-
Explicit Size-Reduction of Circularly Polarized Antennas through Constrained Optimization with Penalty Factor Adjustment
PublicationModern communication systems of high data capacity incorporate circular polarization (CP) as the preferred antenna radiation field configuration. In many applications, integration of the system circuitry with antennas imposes size limitations on CP radiators, which makes their development process a challenging endeavor. This can be mitigated by means of simulation-driven design, specifically, constrained numerical optimization....
-
Pareto Ranking Bisection Algorithm for Expedited Multi-Objective Optimization of Antenna Structures
PublicationThe purpose of this letter is introduction of a novel methodology for expedited multi-objective design of antenna structures. The key component of the presented approach is fast identification of the initial representation of the Pareto front (i.e., a set of design representing the best possible trade-offs between conflicting objectives) using a Pareto-ranking bisection algorithm. The algorithm finds a discrete set of Pareto-optimal...
-
Local response surface approximations and variable-fidelity electromagnetic simulations for computationally efficient microwave design optimisation
PublicationIn this study, the authors propose a robust and computationally efficient algorithm for simulation-driven design optimisation of microwave structures. Our technique exploits variable-fidelity electromagnetic models of the structure under consideration. The low-fidelity model is optimised using its local response surface approximation surrogates. The high-fidelity model is refined by space mapping with polynomial interpolation of...
-
Fast simulation-driven design optimization of UWB band-notch antennas
PublicationIn this letter, a simple yet reliable and automated methodology for rapid design optimization of ultra-wideband (UWB) band-notch antennas is presented. Our approach is a two-stage procedure with the first stage focused on the design of the antenna itself, and the secondstage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. For the...
-
RSS-Based DoA Estimation for ESPAR Antennas Using Support Vector Machine
PublicationIn this letter, it is shown how direction-of-arrival (DoA) estimation for electronically steerable parasitic array radiator (ESPAR) antennas, which are designed to be integrated within wireless sensor network nodes, can be improved by applying support vector classification approach to received signal strength (RSS) values recorded at an antenna's output port. The proposed method relies on ESPAR antenna's radiation patterns measured...
-
Implementation of DIFAR Processing in ASW Dipping Sonar
PublicationThis paper presents the implementation of the signal processing algorithm used by buoy DIFAR (Directional Frequency Analysis and Recording), that is fully operational on Polish Navy anti-submarine warfare (ASW) helicopters and ships, applied to dipping sonars for detection and tracking of submarines. The development of the DSP algorithms was a part of the modernization of sonars conducted at the Gdansk University of Technology....
-
Wideband Channel Measurements for Polarised Indoor Off-Body Communications
PublicationThis paper presents the initial results of wideband channel measurements for polarised off-body communication at 5.8 GHz, in an indoor environment. Channel Impulse Response measurements were performed simultaneously for two orthogonal polarisations of the wearable antenna, and repeated for vertical and horizontal orientations of the off-body one. Four types of measurement scenarios were considered in order to investigate the influence...
-
An Empirical System Loss Model for Body Area Networks in a Passenger Ferry Environment
PublicationThis paper presents a general empirical system loss model for estimating propagation loss in Body Area Networks in off-body communications at 2.45 GHz in a passenger ferry environment. The model is based on measurements, which were carried out in dynamic scenarios in the discotheque passenger ferry environment. The model consists of three components: mean system loss, attenuation resulting from the variable antenna position on...
-
An Empirical System Loss Model for Body Area Networks in a Passenger Ferry Environment
PublicationThis paper presents a general empirical system loss model for estimating propagation loss in Body Area Networks in off-body communications at 2.45 GHz in a passenger ferry environment. The model is based on measurements, which were carried out in dynamic scenarios in the discotheque passenger ferry environment. The model consists of three components: mean system loss, attenuation resulting from the variable antenna position on...
-
Design of a Wideband High-Gain Monopulse Antenna for X- and Ku-Bands Applications
PublicationThe present study provides a wideband high-gain monopulse antenna based on a dielectric lens operating in X- and Ku-bands, in which a wideband dielectric lens is designed and employed to fulfill the radiation pattern and bandwidth necessities of a monopulse antenna. The proposed configuration has four horns allowing for the simultaneous creation of 1 and 6 designs in two perpendicular planes. The main advantages of the proposed...
-
Reconfigurable Antennas for Trustable Things
PublicationIn modern applications, the Internet of Things plays a significant role in increasing the productivity, effectiveness or safety and security of people and assets. Additionally, the reliability of Internet of Things components is crucial from the application point of view, where a resilient and low-latency network is needed. This can be achieved by utilizing reconfigurable antennas to enhance the capabilities of the wireless sensor...
-
Auto-Correction of Non-Anechoic Antenna Measurements Based on Multi-Taper Approach
PublicationMeasurements of antenna prototypes are normally performed in dedicated, yet costly environments such as anechoic chambers (ACs). However, the AC construction cost might be unjustified when the measurements aim to support education, or budget-tight research. Alternatively, experiments can be realized in non-anechoic regime and refined using appropriate methods. In this letter, a framework for correction of antenna far-field measurements...
-
Rapid Variable-Resolution Parameter Tuning of Antenna Structures Using Frequency-Based Regularization and Sparse Sensitivity Updates
PublicationGeometry parameter tuning is an inherent part of antenna design process. While most often performed in a local sense, it still entails considerable computational expenses when carried out at the level of full-wave electromagnetic (EM) simulation models. Moreover, the optimization outcome may be impaired if good initial design is not available. This paper proposes a novel approach to fast and improved-reliability gradient-based...
-
High Isolation Metamaterial-based Dual-band MIMO Antenna for 5G Millimeter-wave Applications
PublicationThis article presents a high-isolation metamaterial-based dual-band multiple-input multiple-output (MIMO) antenna for 5G millimeter-wave communication networks. The proposed antenna is a pentagon-shaped monopole that provides a dual-band response with a wide operating bandwidth at 5G 28/28 bands. The antenna is printed on 0.508-mm-thick Rogers RT5880 substrate of relative permittivity ɛr =2.2. It exhibits a small physical size...
-
Radio Channel Measurements in Off-Body Communications in a Ferry Passenger Cabin
PublicationThis paper presents an off-body radio channel measurements in a ferry passenger cabin at 2.45 GHz band, for static sleeping scenarios with different body orientation and on-body antennas placements, and also for upper and lower sleeping berths. The measurements have been performed with two types of on-body wearable receiving antennas: FlexPIFA (flexible planar inverted F antenna), and FlexNotch (flexible adhesive-backed notch antenna)...
-
Generalized Pareto ranking bisection for computationally feasible multi-objective antenna optimization
PublicationMulti-objective optimization (MO) allows for obtaining comprehensive information about possible design trade-offs of a given antenna structure. Yet, executing MO using the most popular class of techniques, population-based metaheuristics, may be computationally prohibitive when full-wave EM analysis is utilized for antenna evaluation. In this work, a low-cost and fully deterministic MO methodology is introduced. The proposed generalized...
-
Low-cost multiband four-port phased array antenna for sub-6 GHz 5G applications with enhanced gain methodology in Radio-over-fiber systems using modulation instability
PublicationPhased array antenna (PAA) technology is essential for applications requiring high gain and wide bandwidth, such as sensors, medical, and 5G. Achieving such a design, however, is a challenging and intricate process that calls for precise calculations and a combination of findings to alter the phase and amplitude of each unit. Furthermore, coupling effects between these PAA structure elements can only be completed with the use of...
-
An Efficient Simulation Method of Massive MIMO Antenna Arrays used in 5G Mobile Phones
PublicationThis paper deals with a model-order reduction method, applied to speed-up the simulations of MIMO antenna arrays, performed by means of finite element method. The obtained results of the numerical tests show that the described technique is reliable and considerably increases the efficiency of the standard finite element method.