Search results for: DEEP NEURAL NETWORKS - Bridge of Knowledge

Search

Search results for: DEEP NEURAL NETWORKS

Search results for: DEEP NEURAL NETWORKS

  • Computer Networks EN 2022

    e-Learning Courses
    • J. Woźniak
    • J. Grochowski
    • K. Gierłowski

    The student becomes familiar with the network layered logical architectures, classifies the basic problems of network communication and identifies and analyzes selected protocols and mechanisms of LAN and WAN (IP) networks.

  • Computer Networks EN 2023

    e-Learning Courses
    • M. Hoeft
    • J. Woźniak
    • J. Grochowski
    • K. Gierłowski

    The student becomes familiar with the network layered logical architectures, classifies the basic problems of network communication and identifies and analyzes selected protocols and mechanisms of LAN and WAN (IP) networks.

  • Piotr Rajchowski dr inż.

    Piotr Rajchowski (Member, IEEE) was born in Poland, in 1989. He received the E.Eng., M.Sc., and Ph.D. degrees in radio communication from the Gdańsk University of Technology (Gdańsk Tech), Poland, in 2012, 2013, and 2017, respectively. Since 2013, he has been working at the Department of Radiocommunication Systems and Networks, Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, as a IT...

  • Towards neural knowledge DNA

    Publication

    - JOURNAL OF INTELLIGENT & FUZZY SYSTEMS - Year 2017

    In this paper, we propose the Neural Knowledge DNA, a framework that tailors the ideas underlying the success of neural networks to the scope of knowledge representation. Knowledge representation is a fundamental field that dedicates to representing information about the world in a form that computer systems can utilize to solve complex tasks. The proposed Neural Knowledge DNA is designed to support discovering, storing, reusing,...

    Full text available to download

  • Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design

    Publication

    - Materials - Year 2023

    The design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...

    Full text available to download

  • Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction

    Publication

    - Sustainability - Year 2023

    A reliable air quality prediction model is required for pollution control, human health monitoring, and sustainability. The existing air quality prediction models lack efficiency due to overfitting in prediction model and local optima trap in feature selection. This study proposes the Balanced Spider Monkey Optimization (BSMO) technique for effective feature selection to overcome the local optima trap and overfitting problems....

    Full text available to download

  • Adaptacyjny system oświetlania dróg oraz inteligentnych miast

    Publication

    - Year 2024

    Przedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...

    Full text available to download

  • Neural Network Subgraphs Correlation with Trained Model Accuracy

    Publication

    - Year 2020

    Neural Architecture Search (NAS) is a computationally demanding process of finding optimal neural network architecture for a given task. Conceptually, NAS comprises applying a search strategy on a predefined search space accompanied by a performance evaluation method. The design of search space alone is expected to substantially impact NAS efficiency. We consider neural networks as graphs and find a correlation between the presence...

    Full text to download in external service

  • Measures of region failure survivability for wireless mesh networks

    Publication

    - WIRELESS NETWORKS - Year 2015

    Wireless mesh networks (WMNs) are considered as a promising alternative to wired local, or metropolitan area networks. However, owing to their exposure to various disruptive events, including natural disasters, or human threats, many WMN network elements located close to the failure epicentre are frequently in danger of a simultaneous failure, referred to as a region failure. Therefore, network survivability, being the ability...

    Full text available to download

  • Influence of Thermal Imagery Resolution on Accuracy of Deep Learning based Face Recognition

    Publication

    Human-system interactions frequently require a retrieval of the key context information about the user and the environment. Image processing techniques have been widely applied in this area, providing details about recognized objects, people and actions. Considering remote diagnostics solutions, e.g. non-contact vital signs estimation and smart home monitoring systems that utilize person’s identity, security is a very important factor....

    Full text available to download

  • Neural network training with limited precision and asymmetric exponent

    Publication

    Along with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...

    Full text available to download

  • Survey on fuzzy logic methods in control systems of electromechanical plants

    Publication
    • R. Strzelecki
    • G. Demidova
    • D. Lukichev
    • N. Polyakov
    • A. Abdullin
    • S. Lovlin

    - Science, Technology and Arts Research Journal - Year 2019

    Рассмотрены алгоритмы управления электромеханическими системами с использованием теории нечеткой логики, приводятся основные положения их синтеза, рассматриваются методы анализа их устойчивости на основе нечетких функций Ляпунова. Эти алгоритмы чаще всего реализуются в виде различных регуляторов, применение которых целесообразно в системах, математическая модель которых не известна, не детерминирована или является строго нелинейной,...

    Full text available to download

  • Global Surrogate Modeling by Neural Network-Based Model Uncertainty

    Publication

    - Year 2022

    This work proposes a novel adaptive global surrogate modeling algorithm which uses two neural networks, one for prediction and the other for the model uncertainty. Specifically, the algorithm proceeds in cycles and adaptively enhances the neural network-based surrogate model by selecting the next sampling points guided by an auxiliary neural network approximation of the spatial error. The proposed algorithm is tested numerically...

    Full text to download in external service

  • OBTAINING FLUID FLOW PATTERN FOR TURBINE STAGE WITH NEURAL MODEL.

    Publication

    In the paper possibility of applying neural model to obtaining patterns of proper operation for fluid flow in turbine stage for fluid-flow diagnostics is discussed. Main differences between Computational Fluid Dynamics (CFD) solvers and neural model is given, also limitations and advantages of both are considered. Time of calculations of both methods was given, also possibilities of shortening that time with preserving the accuracy...

    Full text available to download

  • Deep Learning w Keras

    e-Learning Courses
    • A. Karpus

    Kurs przeznaczony dla słuchaczy studiów podyplomowych Sztuczna inteligencja i automatyzacja procesów biznesowych w ujęciu praktycznym - edycja biznesowa.

  • Exploiting multi-interface networks: Connectivity and Cheapest Paths

    Publication

    - WIRELESS NETWORKS - Year 2010

    Let G = (V,E) be a graph which models a set of wireless devices (nodes V) that can communicate by means of multiple radio interfaces, according to proximity and common interfaces (edges E). The problem of switching on (activating) the minimum cost set of interfaces at the nodes in order to guarantee the coverage of G was recently studied. A connection is covered (activated) when the endpoints of the corresponding edge share at...

    Full text to download in external service

  • Modeling the Networks - ed. 2021/2022

    e-Learning Courses

    The goal of this course is to present optimization problems for road networks, where the road network is a set of n distinct lines, or n distinct (open or closed) line segments, in the plane, such that their union is a connected region.

  • Electromagnetic Modeling of Microstrip Elements Aided with Artificial Neural Network

    Publication

    - Year 2020

    The electromagnetic modeling principle aided withartificial neural network to designing the microwave widebandelements/networks prepared in microstrip technology is proposedin the paper. It is assumed that the complete information is knownfor the prototype design which is prepared on certain substratewith certain thickness and electric permittivity. The longitudinaland transversal dimensions of new design...

    Full text available to download

  • Model-Based Adaptive Machine Learning Approach in Concrete Mix Design

    Publication

    Concrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...

    Full text available to download

  • Selection of an artificial pre-training neural network for the classification of inland vessels based on their images

    Publication

    - Zeszyty Naukowe Akademii Morskiej w Szczecinie - Year 2021

    Artificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...

    Full text available to download

  • Deep learning based thermal image segmentation for laboratory animals tracking

    Publication

    Automated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...

    Full text to download in external service

  • Neural Approximators for Variable-Order Fractional Calculus Operators (VO-FC)

    Publication

    - IEEE Access - Year 2022

    The paper presents research on the approximation of variable-order fractional operators by recurrent neural networks. The research focuses on two basic variable-order fractional operators, i.e., integrator and differentiator. The study includes variations of the order of each fractional operator. The recurrent neural network architecture based on GRU (Gated Recurrent Unit) cells functioned as a neural approximation for selected...

    Full text available to download

  • Experimental tests of reinforced concrete deep-beams

    The paper presents results of experimental research of the reinforced concrete deep beam with a spatial arrangement. Tested structural elements consist of the cantilever deep beam loaded on the height and transverse deep beam with hanging on it another one. The analysis includes crack morphology, effort of steel and load distribution. The article verified effectiveness of two different kind of reinforcement in both tested deep...

  • TOXIC GASES IDENTIFICATION USING SINGLE ELECTROCATALYTIC SENSOR RESPONSES AND ARTIFICIAL NEURAL NETWORK

    The need for precise detection of toxic gases drives development of new gas sensors structures and methods of processing the output signals from the sensors. In literature, artificial neural networks are considered as one of the most effective tool for the analysis of gas sensors or sensors arrays responses. In this paper a method of toxic gas components identification using a electrocatalytic gas sensor as a detector and an artificial...

  • Neural Modelling of Steam Turbine Control Stage

    Publication

    The paper describes possibility of steam turbine control stage neural model creation. It is of great importance because wider application of green energy causes severe conditions for control of energy generation systems operation Results of chosen steam turbine of 200 MW power measurements are applied as an example showing way of neural model creation. They serve as training and testing data of such neural model. Relatively simple...

    Full text to download in external service

  • LOS and NLOS identification in real indoor environment using deep learning approach

    Visibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning. In this paper a deep learning (DL) model to classify LOS/NLOS...

    Full text available to download

  • Emotion Recognition from Physiological Channels Using Graph Neural Network

    In recent years, a number of new research papers have emerged on the application of neural networks in affective computing. One of the newest trends observed is the utilization of graph neural networks (GNNs) to recognize emotions. The study presented in the paper follows this trend. Within the work, GraphSleepNet (a GNN for classifying the stages of sleep) was adjusted for emotion recognition and validated for this purpose. The...

    Full text available to download

  • Neural Development

    Journals

    ISSN: 1749-8104

  • Neural Computation

    Journals

    ISSN: 0899-7667 , eISSN: 1530-888X

  • EXPERIMENTAL AND THEORETICAL FLOW OF THE FORCES IN DEEP BEAMS WITH CANTILEVAR

    This article presents the results of experimental research carried out on deep beams with cantilever which was loaded throughout the depth. The main deep beam was directly simply supported on the one side. On the other side the deep beam was suspended in another deep member situated at right angles. All deep beams created a spatial arrangement. The paper is focused on the analysis of the cracks morphology and flow of the internal...

  • Grade of service determination methodology in IP networks with SIP protocol

    Although Grade of Service is very important in VoIP providers evaluation, We wasn't able to find any paper regarding the topic of measuring GoS variables for IP networks utilizing SIP, which are defined like for PSTN/ISDN/GSM networks (post-selection delay, answering delay, release delay, or probability of end-to-end blocking). Due to the lack of research in this field, it was necessary to start from defining measures and cover...

  • A Closed Bipolar Electrochemical Cell for the Interrogation of BDD Single Particles: Electrochemical Advanced Oxidation

    Publication
    • A. D. Dettlaff
    • J. Tully
    • G. Wood
    • D. Chauhan
    • B. Breeze
    • L. Song
    • J. V. Macpherson

    - ELECTROCHIMICA ACTA - Year 2024

    A closed bipolar electrochemical cell containing two conductive boron-doped diamond (BDD) particles of size  250 – 350 m, produced by high-pressure high-temperature (HPHT) synthesis, has been used to demonstrate the applicability of single BDD particles for electrochemical oxidative degradation of the dye, methylene blue (MB). The cell is fabricated using stereolithography 3D printing and the BDD particles are located at either...

    Full text available to download

  • Basics of Deep Learning 24/25

    e-Learning Courses
    • K. Draszawka

  • Neural network simulator's application to reference performance determination of turbine blading in the heat-flow diagnostics.

    Publication

    - Year 2013

    In the paper, the possibility of application of artificial neural networks to perform the fluid flow calculations through both damaged and undamaged turbine blading was investigated. Preliminary results are presented and show the potentiality of further development of the method for the purpose of heat-flow diagnostics.

    Full text to download in external service

  • Adding Interpretability to Neural Knowledge DNA

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2022

    This paper proposes a novel approach that adds the interpretability to Neural Knowledge DNA (NK-DNA) via generating a decision tree. The NK-DNA is a promising knowledge representation approach for acquiring, storing, sharing, and reusing knowledge among machines and computing systems. We introduce the decision tree-based generative method for knowledge extraction and representation to make the NK-DNA more explainable. We examine...

    Full text available to download

  • A compact smart sensor based on a neural classifier for objects modeled by Beaunier's model

    A new solution of a smart microcontroller sensor based on a simple direct sensor-microcontroller interface for technical objects modeled by two-terminal networks and by the Beaunier’s model of anticorrosion coating is proposed. The tested object is stimulated by a square pulse and its time voltage response is sampled four times by the internal ADC of microcontroller. A neural classifier based on measurement data classifies the...

    Full text available to download

  • An Analysis of Neural Word Representations for Wikipedia Articles Classification

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2019

    One of the current popular methods of generating word representations is an approach based on the analysis of large document collections with neural networks. It creates so-called word-embeddings that attempt to learn relationships between words and encode this information in the form of a low-dimensional vector. The goal of this paper is to examine the differences between the most popular embedding models and the typical bag-of-words...

    Full text to download in external service

  • Resilient Routing in Communication Networks

    Publication

    - Year 2015

    This important text/reference addresses the latest issues in end-to-end resilient routing in communication networks. The work highlights the main causes of failures of network nodes and links, and presents an overview of resilient routing mechanisms, covering issues related to the Future Internet (FI), wireless mesh networks (WMNs), and vehicular ad-hoc networks (VANETs). For each of these network architectures, a selection of...

    Full text to download in external service

  • Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction

    Publication

    - Scientific Reports - Year 2023

    This work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...

    Full text available to download

  • Evolving neural network as a decision support system — Controller for a game of “2048” case study

    Publication

    The paper proposes an approach to designing the neuro-genetic self-learning decision support system. The system is based on neural networks being adaptively learned by evolutionary mechanism, forming an evolved neural network. Presented learning algorithm enables for a selection of the neural network structure by establishing or removing of connections between the neurons, and then for a finding the beast suited values of the network...

    Full text to download in external service

  • WIRELESS NETWORKS

    Journals

    ISSN: 1022-0038 , eISSN: 1572-8196

  • Big Data from Sensor Network via Internet of Things to Edge Deep Learning for Smart City

    Publication

    - Year 2021

    Data from a physical world is sampled by sensor networks, and then streams of Big Data are sent to cloud hosts to support decision making by deep learning software. In a smart city, some tasks may be assigned to smart devices of the Internet of Things for performing edge computing. Besides, a part of workload of calculations can be transferred to the cloud hosts. This paper proposes benchmarks for division tasks between an edge...

    Full text to download in external service

  • Towards a classification of networks with asymmetric inputs

    Publication

    - NONLINEARITY - Year 2021

    Coupled cell systems associated with a coupled cell network are determined by (smooth) vector fields that are consistent with the network structure. Here, we follow the formalisms of Stewart et al (2003 SIAM J. Appl. Dyn. Syst. 2, 609–646), Golubitsky et al (2005 SIAM J. Appl. Dyn. Syst. 4, 78–100) and Field (2004 Dyn. Syst. 19, 217–243). It is known that two non-isomorphic n-cell coupled networks can determine the same sets of...

    Full text available to download

  • The reliability of tree and star networks.

    Publication

    - Year 2008

    One of the important parameters characterizing the quality of computer networks is the network's reliability with respect to failures of the communication links and nodes. This chapter investigated the reliability of tree and star networks. The tree and star topology is used in centralized computer networks. In centralized computer networks all communication must take place through some central computer. Following measures of network...

  • Communication Networks in the Service of the Environmental Monitoring

    In the paper selected issues relating to communication networks in the services of the environmental monitoring (EM) have been described. It is divided into three main parts: introduction, wire and wireless networks. At the beginning of the basic definitions were explained. The wire part focuses on a plain old telephone service (POTS), an integrated services digital network (ISDN), a digital subscriber line (DSL) and a fiber-optic...

  • Computer Networks - lectures 2024/2025

    e-Learning Courses
    • M. Hoeft
    • A. Tomaszewski
    • J. Grochowski
    • K. Gierłowski

    Student uczy się: jak mówić o sieciach komputerowych - poznaje podstawowe pojęcia (np. protokół komunikacyjny), ich znaczenie i związki; jak sieci komuterowe są zbudowane i wykorzystywne - uczy się podstaw działania sieci (np. komutacja pakietów) i architektury sieci (np. płaszczyzny sieci) oraz poznaje podstawowe technologie sieciowe (np. protokół IP); jak sieci komputerowe ewoluują - poznaje historię rozwoju sieci, ewolucję wymagań,...

  • Journal of Deep Space Exploration

    Journals

    ISSN: 2096-9287

  • Karol Flisikowski dr inż.

    Karol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...

  • Cost minimization in wireless networks with a bounded and unbounded number of interfaces

    Publication

    - NETWORKS - Year 2009

    Praca dotyczy problemu minimalizacji energii poprzez selektywne odłączanie urządzeń komunikacyjnych w wielointerfejsowych sieciach bezprzewodowych w taki sposób, by zapewnić realizację wymaganego grafu połączeń. Sformułowano problem optymalizacyjny, podano wyniki dotyczące jego trudności i zaproponowano algorytmy optymalizacyjne. Rozważono zarówno wariant, w którym liczba interfejsów komunikacyjnych jest parametrem stałym (narzuconym...

    Full text to download in external service

  • Deep Eutectic Solvents and Their Uses for Air Purification

    Chemical compounds released into the air by the activities of industrial plants and emitted from many other sources, including in households (paints, waxes, cosmetics, disinfectants, plastic (PVC) flooring), may affect the environment and human health. Thus, air purification is an important issue in the context of caring for the condition of the environment. Deep eutectic solvents (DESs) as liquids with environmentally friendly...

    Full text available to download