Search results for: BREWERS' SPENT GRAIN AND HOPS
-
More than just a beer – Brewers' spent grain, spent hops, and spent yeast as potential functional fillers for polymer composites
PublicationBeer is among the most popular beverages in the world, with the production distributed uniformly between the biggest continents, so the utilization of brewing by-products is essential on a global scale. Among their potential recipients, the plastics industry offers extensive range of potential products. Herein, the presented study investigated the application of currently underutilized solid brewing by-products (brewers' spent...
-
Enhanced aging resistance of poly(ε-caprolactone)/brewers’ spent grain composites
PublicationThe presented paper investigated the influence of brewers’ spent grain (BSG) extrusion pa-rameters on the photo-oxidative resistance of poly(ε-caprolactone)-based wood polymer composites. Filler samples characterized by the higher melanoidin content were more efficient in hindering of poly-mer degradation, inhibiting the decomposition of the polymer amorphous phase. As aresult, deteriora-tion of mechanical performance was limited,...
-
Sustainable upcycling of brewers’ spent grain by thermo-mechanical treatment in twin-screw extruder
PublicationThermo-mechanical treatment of brewers’ spent grain (a by-product of beer manufacturing) was successfully performed via the extrusion process. The impact of temperature (from 30 to 180 °C), throughput (from 1 to 5 kg/h) and screw speed (from 75 to 375 rpm) on particle size, color, chemical structure, antioxidant activity and thermal stability of resulting material, as well as correlations between particular properties, were investigated....
-
Insights into the Thermo-Mechanical Treatment of Brewers’ Spent Grain as a Potential Filler for Polymer Composites
PublicationThis paper investigated the impact of twin-screw extrusion parameters on the properties of brewers’ spent grain. The chemical structure, antioxidant activity, particle size, and color properties, as well as the emission of volatile organic compounds during extrusion, were investigated. The main compounds detected in the air during modifications were terpenes and terpenoids, such as α-pinene, camphene, 3-carene, limonene, or terpinene....
-
Poly(ε-Caprolactone)/Brewers’ Spent Grain Composites—The Impact of Filler Treatment on the Mechanical Performance
PublicationWaste lignocellulose materials, such as brewers’ spent grain, can be considered very promising sources of fillers for the manufacturing of natural fiber composites. Nevertheless, due to the chemical structure differences between polymer matrices and brewers’ spent grain, filler treatment should be included. The presented work aimed to investigate the impact of fillers’ reactive extrusion on the chemical structure and the poly(ε-caprolactone)/brewers’...
-
THE MELT FLOWABILITY AND TENSILE PERFORMANCE OF POLY (-CAPROLACTONE)/BREWERS’ SPENT GRAIN COMPOSITES AS A FUNCTION OF FILLER MODIFICATION
PublicationNowadays, it is essential to reduce the environmental impact of products and technologies. Such an approach should be highlighted in all research activities. In the case of polymer composites, it can be realized by introducing by-products or waste materials as fillers. An auspicious example of such material is the brewers’ spent grain, the major byproduct of the beer production. Its chemical composition, relatively similar to conventional...
-
Performance properties of rigid polyurethane-polyisocyanurate/brewers’ spent grain foamed composites as function of isocyanate index
PublicationIn the presented work, rigid polyurethane-polyisocyanurate (PUR-PIR) foams filled with brewers’ spent grain (BSG) were prepared. The influence of the isocyanate index (II) on its performance was investigated. Foams obtained with higher isocyanate index required a higher amount of hydrofluorocarbon physical blowing agent to provide the same apparent density of material. An increase of isocyanate index resulted in a slight decrease...
-
Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber
PublicationIn this work, brewers’ spent grain (BSG) and ground tire rubber (GTR) waste fillers were applied as low-cost reinforcement phase in rigid polyurethane foam (PUR). PUR/BSG/GTR composites were prepared by a single step method, using polyglycerol as partial substitute of commercially available petrochemical polyols. Foaming parameters, chemical structure, dynamic mechanical properties, thermal stability, physico-mechanical properties...
-
Preparation and characterization of natural rubber composites highly filled with brewers' spent grain/ground tire rubber hybrid reinforcement
PublicationBrewers' spent grain (BSG) and ground tire rubber (GTR) were applied as low-cost hybrid reinforcement natural rubber (NR). The impact of BSG/GTR ratio (in range: 100/0, 75/25, 50/50, 25/75 and 0/100 phr) on processing and performance properties of highly filled natural rubber composites was evaluated by oscillating disc rheometer, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy,...
-
The impact of thermomechanical and chemical treatment of waste Brewers’ spent grain and soil biodegradation of sustainable Mater-Bi-Based biocomposites
PublicationDue to the massive plastic pollution, development of sustainable and biodegradable polymer materials is crucial to reduce environmental burdens and support climate neutrality. Application of lignocellulosic wastes as fillers for polymer composites was broadly reported, but analysis of biodegradation behavior of resulting biocomposites was rarely examined. Herein, sustainable Mater-Bi-based biocomposites filled with thermomechanically-...
-
Mater-Bi/Brewers’ Spent Grain Biocomposites—Novel Approach to Plant-Based Waste Filler Treatment by Highly Efficient Thermomechanical and Chemical Methods
PublicationThermoplastic starch (TPS) is a homogenous material prepared from native starch and water or other plasticizers subjected to mixing at a temperature exceeding starch gelatinization temperature. It shows major drawbacks like high moisture sensitivity, poor mechanical properties, and thermal stability. To overcome these drawbacks without significant cost increase, TPS could be blended with bio-based or biodegradable polymers and...
-
More than just a beer—the potential applications of by-products from beer manufacturing in polymer technology
PublicationBeer is the most popular alcoholic beverage in the world, and its popularity is continuously growing. Currently, global beer production is estimated at around 2 billion hectoliters. Nevertheless, the increasing production capacity implicates the rising issue of generated by-products—brewers’ spent grain, spent hops, spent yeast, and wastewater. They are generated in massive amounts, so having in mind the current pro-ecological...
-
By-Products from Food Industry as a Promising Alternative for the Conventional Fillers for Wood–Polymer Composites
PublicationThe present paper describes the application of two types of food-industry by-products, brewers’ spent grain (BSG), and coffee silverskin (ŁK) as promising alternatives for the conventional beech wood flour (WF) for wood–polymer composites. The main goal was to investigate the impact of partial and complete WF substitution by BSG and ŁK on the processing, structure, physicochemical, mechanical, and thermal properties of resulting...
-
Towards Understanding the Health Aspects of the Processing of Lignocellulosic Fillers
PublicationHealth and safety issues should be addressed during the development and investigation of the industrial processes. In order to develop a sustainable process and fully evaluate its benefits and drawbacks for its optimization, it is crucial to determine its impact on the surrounding environment. This study aimed to assess the emission of volatile organic compounds during the modification of lignocellulosic fillers with passive dosimetry....
-
Investigating the Impact of Curing System on Structure-Property Relationship of Natural Rubber Modified with Brewery By-Product and Ground Tire Rubber
PublicationThe application of wastes as a filler/reinforcement phase in polymers is a new strategy to modify the performance properties and reduce the price of biocomposites. The use of these fillers, coming from agricultural waste (cellulose/lignocellulose-based fillers) and waste rubbers, constitutes a method for the management of post-consumer waste. In this paper, highly-filled biocomposites based on natural rubber (NR) and ground tire...
-
Microwave assisted liquefaction with crude glycerol as a potential method of brewer's spent grain utylization
PublicationBrewer's spent grain was applied as a low-cost industrial type of lignocellulose biomass in a liquefaction and solvent: biomass ratio on the efficiency of the process, chemical structure and basic properties of obtained prepared polyols and soil residues shed light on the biomass degradation mechanism through application of microwaves and further reaction of degradation products with solvent particles.
-
Novel Drying Methods for Sustainable Upcycling of Brewers’ Spent Grains as a Plant Protein Source
Publication -
Microwave Assisted Liquefaction with Crude Glycerol as a Potential Method of Brewer’s Spent Grain Utilization
Publication -
Brewery spent grain valorization through fermentation: Targeting biohydrogen, carboxylic acids and methane production
PublicationThis study investigated three different fermentation approaches to explore the potential for producing biohydrogen, carboxylic acids, and methane from hydrolysates of thermally dilute acid pretreated brewer's spent grains (BSG). Initially, the research focused on maximizing the volumetric hydrogen production rate (HPR) in the continuous dark fermentation (DF) of BSG hydrolysates by varying the hydraulic retention time (HRT). The...
-
Processing, mechanical and thermal behavior assessments of polycaprolactone/agricultural wastes biocomposites
PublicationIn this paper, brewer’s spent grain (BSG) was applied as potential lignocellulose biofiller in biocompos-ites based on polycaprolactone (PCL). The PCL/BSG biocomposites filled with varying content of biofillerswere prepared via low-temperature melt-compounding. These conditions allow limiting thermal degra-dation of used biofillers during processing. The influence of biofiller content (ranging from 25 to 200parts by weight on 100...