Search results for: FREQUENCY RECONFIGURABLE ANTENNA, MONOPOLE ANTENNA, UWB BAND, KU BAND, PIN DIODE
-
Frequency Reconfigurable PIN Diode-Based Reuleaux-Triangle-Shaped Monopole Antenna for UWB/Ku Band Applications
PublicationThis paper presents a frequency reconfigurable monopole antenna developed for UWB/Ku band applications. The design employs a microstrip-fed Reuleaux-triangle-shaped patch with a defected ground structure. The antenna exhibits a wide operating bandwidth achieved due to rectangular slits integrated into the Reuleaux-triangle patch. Meanwhile, adding rectangular slots in the ground plane improves the return loss level. Frequency reconfigurability...
-
A compact spline-enhanced monopole antenna for broadband/multi-band and beyond UWB applications
PublicationIn this work, a compact monopole antenna for broadband/multi-band and beyond ultra- wideband (UWB) communication has been proposed. The structure is based on a spline-enhanced radiator with a broadband feed and a modified ground plane. Rigorous design optimization of the radiator has been performed in a two-stage framework where optimization of the structure with respect to electrical performance is followed by explicit miniaturization...
-
RSS-Based DoA Estimation Using ESPAR Antenna for V2X Applications in 802.11p Frequency Band
PublicationIn this paper, we have proposed direction-of arrival (DoA) estimation of incoming signals for V2X applications in 802. 11p frequency band, based on recording of received signal strength (RSS) at electronically steerable parasitic array radiator (ESPAR) antenna's output port. The motivation of the work was to prove that ESPAR antenna used to increase connectivity and security in V2X communication can be also used for DoA estimation....
-
RSS-Based DoA Estimation Using ESPAR Antenna for V2X Applications in 802.11p Frequency Band
PublicationIn this paper, we have proposed direction-of arrival (DoA) estimation of incoming signals for V2X applications in 802. 11p frequency band, based on recording of received signal strength (RSS) at electronically steerable parasitic array radiator (ESPAR) antenna's output port. The motivation of the work was to prove that ESPAR antenna used to increase connectivity and security in V2X communication can...
-
RSS-Based DoA Estimation in 802.11p Frequency Band Using ESPAR Antenna and PPCC-MCP Method
PublicationIn this paper, the concept of direction of arrival (DoA) estimation using electronically steerable parasitic array radiator (ESPAR) antenna designed to operate in IEEE 802.11p vehicular communication standard has been investigated with respect to different possible elevation angles of a radio frequency (RF) signal impinging the antenna. To this end, two different possible sets of the 3D antenna radiation patterns have been used...
-
A system for Direction-Of-Arrival estimation in ISM 2.4 GHz frequency band based on ESPAR antenna and SDR technology
PublicationDetermination of the direction of the signal arrival (DOA) finds many applications in various areas of science and industry. Knowledge of DOA is used, among others to determine the position of a satellite with a low Earth orbit (LEO), localization of people and things as well as in research of wireless communication systems, for instance the determination of the number of...
-
Embedded device for indoor positioning of mobile terminals in ISM 2.4 GHz frequency band integrated with ESPAR antenna
PublicationIn the era of multifunctional mobile phones, wireless positioning is one of the most important branches of telecommunications development. This functionality is possible thanks to global positioning systems such as GPS, whose services are available to every average user. Global systems, however, suffer from their low accuracy in confined environments such as forests and building interiors. A popular...
-
Fast geometry scaling of UWB band-notch antennas
PublicationImplementation of band-notch capability plays an important role in the design of ultra-wideband (UWB) antennas. At the same time, appropriate sizing of antenna geometry parameters in order to precisely allocate the notch at the required frequency as well as to ensure sufficient reflection level is quite challenging and has to be based—for reliability reasons—on full-wave electromagnetic (EM) simulations of the structure. In this...
-
Elliptical slot UWB monopole antenna
PublicationThe UWB monopole antenna with elliptical radiating slot end and microstrip feeding line terminated with radial stub have been designed, fabricated and measured. The antenna show return loss less than -12 dB in the whole UWB bandwidth. Linearity of the reflection coefficient phase product have also been achieved. Radiation patterns of the antenna measured at three selected frequency points indicated regular, approximately omni directional...
-
Numerical and experimental generated data during project https://doi.org/10.1109/LAWP.2024.3429499
Open Research DataThe dataset was generated during a project aimed at designing an extremely compact frequency-reconfigurable self-diplexing antenna based on fluidic channels for sub-6 GHz applications. The self-diplexing antenna is realized by using slot-loaded half-mode and quarter-mode substrate-integrated rectangular cavities, which take an extremely compact size....
-
A Concept and Design Optimization of Compact Planar UWB Monopole Antenna
PublicationA novel structure concept of a compact UWB monopole antenna is introduced together with a low-cost design optimization procedure. Reduced footprint is achieved by introduction of a protruded ground plane for current path increase and a matching transformer to ensure wideband impedance matching. All geometrical parameters of the structure are optimized simultaneously by means of surrogate based optimization involving variable-fidelity...
-
Novel Structure and EM-Driven Design of Small UWB Monopole Antenna
PublicationA novel structure of a small UWB monopole antenna is presented. In our approach, a compact size is achieved by means of a meander line for current path enlargement as well as the two parameterized slits that introduce additional degrees of freedom helping to ensure good impedance matching. The antenna design is carried out using surrogate-based optimization involving variable-fidelity EM simulations. This allows us to simultaneously...
-
Fast simulation-driven design optimization of UWB band-notch antennas
PublicationIn this letter, a simple yet reliable and automated methodology for rapid design optimization of ultra-wideband (UWB) band-notch antennas is presented. Our approach is a two-stage procedure with the first stage focused on the design of the antenna itself, and the secondstage aiming at identification of the appropriate dimensions of the resonator with the purpose of allocating the band-notch in the desired frequency range. For the...
-
Microfluidically Frequency-Reconfigurable Compact Self-Quadruplexing Tunable Antenna with High Isolation Based on Substrate Integrated Waveguide
PublicationThis communication presents a novel concept of microfluidically frequency-reconfigurable self-quadruplexing tunable antenna for quad-band applications. At the initial design stage, a substrate-integrated square cavity is divided into four unequal quarter-mode cavity resonators by inserting an X-shaped slot on the top surface of the cavity. Applying four 50-ohm microstrip feed-lines to these four quarter-mode cavity resonators enables...
-
Ultra-Miniaturized HMSIW Cavity-Backed Reconfigurable Antenna Diplexer Employing Dielectric Fluids with Wide Frequency Tuning Range
PublicationThis communication presents an ultra-miniaturized two-way frequency tunable antenna diplexer based on cavity-backed slots and dielectric fluids. The proposed antenna utilizes two half-mode substrate-integrated rectangular cavities loaded with slots and fluidic pockets. The conventional size reduction is achieved by employing half-mode cavities, whereas ultra-miniaturization is obtained by applying the slots, which provides additional...
-
Structure and computationally-efficient simulation-driven design of compact UWB monopole antenna
PublicationIn this letter, a structure of a small ultra-wideband (UWB) monopole antenna, its design optimization procedure as well as experimental validation are presented. According to our approach, antenna compactness is achieved by means of a meander line for current path enlargement as well as the two parameterized slits providing additional degrees of freedom that help to ensure good impedance matching. For the sake of reliability, the...
-
Pattern Reconfigurable Quasi Yagi Antenna with Origami Inspired Magic Spiral Cubes for Dynamic Indoor IoT Applications
PublicationThis paper presents a novel deployable antenna design with reconfigurable radiation patterns suitable for various indoor Internet of Things (IoT) applications. Inspired by origami, the antenna comprises a central monopole patch housed on a magic cube (MC-2) and two other modular units comprising stacks of magic cubes (MCs). In compact form, i.e., State-1, the antenna occupies a space of 50 mm, whereas in other states, it occupies...
-
A Compact Tri-Band Omnidirectional Antenna Design for CubeSat Applications
PublicationThis paper presents a compact tri-band omnidirectional antenna designed for CubeSat applications, operating at UHF (0.755 GHz), L-band (1.25 GHz), and S-band (2.28–3.74 GHz). The antenna features a defected ground structure (DGS) and metallic vias, which enhance impedance matching and enable stable multi-band resonance while maintaining a small footprint of 0.26λ × 0.26λ × 0.013λ within a 1U CubeSat. Unlike conventional CubeSat...
-
Fast Simulation-Driven Design of a Planar UWB Dipole Antenna with an Integrated Balun
PublicationThe paper presents a design of an ultra-wideband (UWB) antenna with an integrated balun. A fully planar balun interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure includes the dipole, the balun, and the microstrip input to account for interactions over the UWB band. The EM model is adjusted for low reflection...
-
Size-Reduction-Oriented Design of Compact CPW-Fed UWB Monopole Antenna
PublicationA structure and design optimization of compact CPW-fed UWB monopole antenna is presented. Explicit size reduction through constrained numerical optimization of all relevant geometry parameters of the structure leads to a very small footprint of only 321 mm2. At the same time, a very wide antenna bandwidth is achieved from 3.1 GHz to 17 GHz.
-
Numerical and experimental generated data during project https://doi.org/10.1038/s41598-024-60678-3
Open Research DataThe dataset was generated during a project aimed at designing a printed wideband antenna with a planar geometry for Internet of Things (IoT) applications. The proposed design exploits a coplanar-waveguide-fed modified microstrip line monopole for the excitation of circularly polarized waves radiating in the broadside direction. The impedance bandwidth...
-
Design of a Planar UWB Dipole Antenna with an Integrated Balun Using Surrogate-Based Optimization
PublicationA design of an ultra-wideband (UWB) antenna with an integrated balun is presented. A fully planar balun configuration interfacing the microstrip input of the structure to the coplanar stripline (CPS) input of the dipole antenna is introduced. The electromagnetic (EM) model of the structure of interest includes the dipole, the balun, and the microstrip input to account for coupling and radiation effects over the UWB band. The EM...
-
Frequency-Reconfigurable Hybrid SIW-Based Self-Diplexing Antenna Using Solid and Liquid Dielectric Loading
PublicationThis paper presents a novel frequencyreconfigurable self-diplexing antenna (SDA) utilizing a hybrid substrate-integrated waveguide (SIW). The antenna comprises a radiating slot, a feeding network, and a hybrid SIW cavity featuring half-mode circular and half-mode rectangular SIW structures. The unique feature of this antenna lies in its fine-tuning capability of each resonant frequency by inserting or injecting solid and liquid...
-
High-Gain Compact Circularly Polarized X-Band Superstrate Antenna for CubeSat Applications
PublicationIn this letter, a concept of high-gain circularly polarized X-band antenna employing a partially reflecting surface (PRS) has been presented. In the initial antenna analysis, the influence of parasitic elements size in the PRS structure on antenna radiation pattern parameters has been investigated and the optimal arrangement of the elements has been identified. The proposed antenna provides wide bandwidth of return loss above 10...
-
Asymmetrical-Slot Antenna with Enhanced Gain for Dual-Band Applications
PublicationDual-band operation is an important feature of antennas to be applied in modern communication systems. Although high gain of radiators is rarely of concern in urban areas with densely located broadcasting stations, it becomes crucial for systems operating in more remote environments. In this work, a dual-band antenna with enhanced bandwidth is proposed. The structure consists of a driven element in the form of an asymmetrical radiator/slot...
-
Numerical and experimental generated data during project https://doi.org/10.3390/electronics12224710
Open Research DataThe dataset was generated during a project aimed at designing a super-wideband multiple-input multiple-output (SWB MIMO) antenna with a low profile, low mutual coupling, high gain, and compact size for microwave and millimeter-wave (mm-wave) fifth-generation (5G) applications. A single antenna is a simple elliptical-square shape with a small physical...
-
A structure and design of a novel compact UWB MIMO antenna
PublicationIn the paper, a concept and design procedure of a novel compact MIMO slot antenna is presented. In order to achieve a better filling of available space, individual antennas are constrained to a triangular shape and optimized for a reduced size. The MIMO structure is then assembled using the two of previously designed antennas in orthogonal arrangement. Surrogate-assisted numerical optimization involving variable-fidelity electromagnetic...
-
Highly Integrable Planar-structured Printed Circularly Polarized Antenna for Emerging Wideband Internet of Things Applications in the Millimeter-Wave Band
PublicationThis paper proposes a numerically and experimentally validated printed wideband antenna with a planar geometry for Internet of Things (IoT) applications. This design tackles the challenges associated with deploying IoT sensors in remote areas or across extensive geographical regions. The proposed design exploits a coplanar-waveguide-fed modified microstrip line monopole for excitation of circularly polarized waves radiating in...
-
High Isolation Metamaterial-based Dual-band MIMO Antenna for 5G Millimeter-wave Applications
PublicationThis article presents a high-isolation metamaterial-based dual-band multiple-input multiple-output (MIMO) antenna for 5G millimeter-wave communication networks. The proposed antenna is a pentagon-shaped monopole that provides a dual-band response with a wide operating bandwidth at 5G 28/28 bands. The antenna is printed on 0.508-mm-thick Rogers RT5880 substrate of relative permittivity ɛr =2.2. It exhibits a small physical size...
-
Miniature reconfigurable antenna
PublicationThis work concerns the design of a miniature, low-profile reconfigurable antenna based on Huygens metamaterial sources for frequency f0 = 2.45 GHz. Two planar Huygens sources were designed consisting of near-field resonators. Sources are excited from a specially designed reconfigurable control system. Thanks to the two PIN diodes, the system can realize two cardioid radiation characteristics with...
-
D-Band High Gain Planer Slot Array Antenna using Gap Waveguide Technology
PublicationA D-band high gain slot array antenna with corporate-fed distribution network based on gap waveguide structures is proposed at 140GHz. To overcome the fabrication challenges at such high frequency, the gap waveguide technology is deployed in which good electrical contact between different parts of the waveguide structure is not required. The proposed sub-array has four radiating slots that are excited by a groove gap cavity and...
-
Dual-band antenna with improved gain for WLAN and ISM applications
PublicationIn this Letter, a dual-band antenna with an improved gain is proposed. The structure features 9.7 and 10.4 dBi gain within 2.4 GHz to 2.5 GHz and 5 GHz to 6 GHz bands, respectively. This makes it suitable for WLAN and ISM applications. The structure comprises an asymmetrical pair of radiators and slots suspended over a reflector. The antenna is optimised in a two-stage process using a trust-region-based gradient search algorithm....
-
A structure and simulation-driven design of compact CPW-fed UWB antenna
PublicationIn this letter, a structure of a miniaturized ultra-wideband CPW-fed antenna and its design proce-dure are presented. The antenna is a modified version of the design previously proposed in the literature, with additional degrees of freedom introduced in order to improve the structure flexibility. The small size is achieved by executing a rigorous optimization procedure that consists of two stages: (i) smart random search carried...
-
A Wideband Corrugated Ridged Horn Antenna with Enhanced Gain and Stable Phase Center for X- and Ku-Band Applications
PublicationIn this letter, a structure and design procedure of a novel double-flared conical horn antenna with an improved gain and a stable phase center is presented. The antenna incorporates a hybrid ridged and corrugated structure. A double-ridged section is responsible for ensuring a wideband operation, whereas the corrugated section supports the hybrid mode. The antenna impedance bandwidth (VSWR < 2) is 6 GHz to 20 GHz. Excellent performance...
-
Low-Cost 3-D Printed Lens Antenna for Ka-Band Connectivity Applications
PublicationThis paper discusses the use of low-cost 3-D printing technology to fabricate dielectric lenses for Ka-band wireless networks. A low-cost FDM alternative to previously presented 3-D printed lens in SLA technology with high performance resin is presented. The presented approach has been demonstrated for a 39 GHz MU-MIMO antenna array modified to realize multibeam or switched-beam antenna that can support demanding energy-efficient...
-
Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization
PublicationAn optimization-based procedure for comprehensive performance comparison of alternative compact UWB antenna topologies is discussed. The assessment of the antenna performance is conducted with respect to the structure size and its reflection response. More specifically, the best possible tradeoffs between these two figures of merit are identified through multiobjective optimization at the level...
-
Design and Characterization of a Planar Structure Wideband Millimeter-Wave Antenna with Wide Beamwidth for Wearable off-body Communication Applications
PublicationThis letter presents the design of a planar single-layer wideband antenna featuring wide beamwidth has well as high and stable in-band gain. The proposed antenna is a planar monopole fed by a bottom-grounded coplanar waveguide to realize wide beamwidth in both the xz- and yz-planes. Simultaneous optimization of all adjustable antenna parameters, carried out at the full-wave electromagnetic simulation level. The constructive interference...
-
Dual-band Millimetre Wave MIMO Antenna with Reduced Mutual Coupling Based on Optimized Parasitic Structure and Ground Modification
PublicationIn this study, a high-isolation dual-band (28/38 GHz) multiple-input–multiple-output (MIMO) antenna for 5G millimeter-wave applications is presented. The antenna consists of two interconnected patches. The primary patch is connected to the inset feed, while the secondary patch is arc-shaped and positioned over the main patch, opposite to the feed. Both patches function in the lower 28 GHz band, while the primary patch is accountable...
-
A Highly Compact Low-Profile Beam Switching Transmitarray Antenna for ISM-Band Applications
PublicationThis paper presents a novel, very low-profile transmitarray antenna (TA) designed specifically for applications in the 24 GHz Industrial, Scientific, and Medical (ISM) band. The design innovation lies in embedding the switchable feed antenna into the beam-focusing surface and adding a reflector, which effectively halves the antenna’s size in the boresight direction. This compact antenna allows for easy beam switching through the...
-
Design and Optimization of Metamaterial-Based Dual-Band 28/38 GHz 5G MIMO Antenna with Modified Ground for Isolation and Bandwidth Improvement
PublicationThis letter presents a high-isolation dual-band multiple-input multiple-output (MIMO) antenna based on the ground plane modification and optimized metamaterials (MMs) for 5G millimeter-wave applications. The antenna is a monopole providing a dual-band response at 5G 28/38 bands with a small physical size (4.8 × 2.9 × 0.762 mm3, excluding the feeding line). The MIMO consists of two symmetric radiating elements arranged adjacently...
-
Ryszard Katulski prof. dr hab. inż.
People -
Low-cost multi-objective optimization of antennas using Pareto front exploration and response features
PublicationIn the paper, a procedure for low-cost multi-objective optimization of antenna structures is presented. Our approach is based on exploration of the Pareto front representing the best possible trade-offs between conflicting objectives, here, the structure size and its electrical performance. Starting from the design representing the best in-band reflection level, subsequent Pareto-optimal designs are identified through local constrained...
-
Expedited simulation-driven design optimization of UWB antennas by means of response features
PublicationIn this work, a method for fast design optimization of broadband antennas is considered. The approach is based on a feature-based optimization (FBO) concept where reflection characteristics of the structure at hand are formulated in terms of suitably defined feature points. Redefinition of the design problem allows for reducing the design optimization cost, because the dependence of feature point coordinates on antenna dimensions...
-
Ultra-Wideband Vivaldi Antenna with an Integrated Noise-Rejecting Parasitic Notch Filter for Online Partial Discharge Detection
PublicationPower transformers and gas-insulated switchgear (GIS) play crucial roles in electrical power grids. However, they may suffer from degradation of insulation material due to wear and tear, leading to their imminent failure. Partial discharges (PDs) are an initial sign of insulation materials degradation which emit signals spanning various physical domains, including electromagnetic. PDs are temporally narrow, high-frequency, stochastic...
-
Numerical and experimental generated data during project https://doi.org/10.1038/s41598-024-68646-7
Open Research DataThe dataset was generated during a project aimed at designing a wide band, enhanced gain dual-polarized antenna. The radiating element of the antenna is designed with multiple slots positioned at unequal spacing but symmetrical along the origin. This methodology provides three-fold advantages: a reduction of side lobes, an adjustment of phase center,...
-
Frequency-Based Regularization for Improved Reliability Optimization of Antenna Structures
PublicationThe paper proposes a modified formulation of antenna parameter tuning problem. The main ingredient of the presented approach is a frequency-based regularization. It allows for smoothening the functional landscape of the assumed cost function, defined to encode the prescribed design specifications. The regularization is implemented as a special penalty term complementing the primary objective and enforcing the alignment of the antenna...
-
Design of a Cellular Dual-Band Sticker Antenna for Thickness-Independent 3D-Printed Substrates
PublicationAdditive manufacturing technology provides high flexibility in designing custom enclosures for prototype devices such as nodes of distributed sensor networks. Although integration of components is desired from the perspective of sensor mobility, it might negatively affect the performance of radio-connectivity due to couplings between the antenna and system peripherals, as well as other unaccounted effects of the 3D printed enclosure....
-
Rapid Multi-band Patch Antenna Yield Estimation Using Polynomial Chaos-Kriging
PublicationYield estimation of antenna systems is important to check their robustness with respect to the uncertain sources. Since the Monte Carlo sampling-based real physics simulation model evaluations are computationally intensive, this work proposes the polynomial chaos-Kriging (PC-Kriging) metamodeling technique for fast yield estimation. PC-Kriging integrates the polynomial chaos expansion (PCE) as the trend function of Kriging metamodel...
-
Accelerated Re-Design of Antenna Structures Using Sensitivity-Based Inverse Surrogates
PublicationThe paper proposes a novel framework for accelerated re-design (dimension scaling) of antenna structures using inverse surrogates. The major contribution of the work is a sensitivity-based model identification procedure, which permits a significant reduction of the number of reference designs required to render the surrogate. Rigorous formulation of the approach is supplemented by its comprehensive numerical validation using a...
-
Expedited Feature-Based Quasi-Global Optimization of Multi-Band Antenna Input Characteristics with Jacobian Variability Tracking
PublicationDesign of modern antennas relies—for reliability reasons—on full-wave electromagnetic simulation tools. In addition, increasingly stringent specifications pertaining to electrical and field performance, growing complexity of antenna topologies, along with the necessity for handling multiple objectives, make numerical optimization of antenna geometry parameters a highly recommended design procedure. Conventional algorithms, particularly...